
Course Coordinator

Python Programming

Table of contents

Preface 5

Preface 5

1 Course Outline 7
1.1 Course Overview . 7
1.2 Key Ideas . 7

1.2.1 Topic 1: Introduction to Algorithmic Thinking 7
1.2.2 Topic 2: Familiarization with Computer Systems and

Language Translators 8
1.2.3 Topic 3: Justification for Using Python 8
1.2.4 Topic 4: Developing Algorithms and Flow Charts 9
1.2.5 Topic 5: Data Types and Arithmetic Operations in

Python . 9
1.2.6 Topic 6: Conditional Statements in Python 10
1.2.7 Topic 7: Loop Structures in Python 10
1.2.8 Topic 8: Functions in Python 10
1.2.9 Topic 9: String Operations in Python 11
1.2.10 Topic 10: Real-time/Technical Applications Using Data

Structures . 11
1.2.11 Topic 11: Micro Project 12

1.3 Teaching Methodology . 12
1.4 Evaluation . 13

2 Basic Python Programming 15
2.1 Introduction . 15
2.2 Examples . 15

3 Sample Programs 17
3.1 Introduction to Python . 17
3.2 Data Types . 17

3.2.1 Static Template . 17
3.2.2 Interactive Cell . 18
3.2.3 Variables . 18
3.2.4 Input and Output Statements 19
3.2.5 Operators . 19

3

4 Contents

3.2.6 Arithmetic Expressions 20
3.2.7 Operator Precedence . 20
3.2.8 Evaluation of Expressions 20
3.2.9 Conditional Statements in Python 20
3.2.10 The elif Statement . 22

4 Summary 25

References 27

References 27

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

5

https://quarto.org/docs/books

1
Course Outline

1.1 Course Overview
Credits: 2
Hours per Week: 2

Course Objectives:

1. To develop algorithmic thinking and problem-solving skills.
2. To familiarize students with computer systems, software, and lan-

guage translators.
3. To justify the use of Python for programming and algorithmic de-

sign.
4. To introduce Python programming concepts, including data types,

conditional statements, and loops.
5. To implement functions, string operations, and real-time applica-

tions using Python’s data structures.
6. To enable students to apply their knowledge to solve practical prob-

lems through a micro project.

1.2 Key Ideas
1.2.1 Topic 1: Introduction to Algorithmic Thinking
Lesson Outcomes:

• Understand the concept of algorithmic thinking.

• Develop basic algorithms for simple problems.

• Recognize the importance of algorithms in problem-solving.

Content:

• What is Algorithmic Thinking?

7

8 1 Course Outline

– Importance in problem-solving

– Steps in designing an algorithm

• Example Algorithms:

– Simple tasks (e.g., making a cup of tea)

Practical Situation:

• Create algorithms for everyday activities to illustrate the concept.

1.2.2 Topic 2: Familiarization with Computer Systems and
Language Translators

Lesson Outcomes:

• Understand basic computer architecture and components.

• Identify different types of software and language translators.

Content:

• Introduction to Computer Architecture:

– Block diagram of a computer

– Hardware components (Input, Output devices)

– Memory types

• Software Types:

– High-level vs. Low-level languages

– Assembly languages

• Language Translators:

– Compilers, Interpreters, Assemblers

Practical Situation:

• Explore how different programming languages and translators affect the ex-
ecution of a simple program.

1.2.3 Topic 3: Justification for Using Python
Lesson Outcomes:

• Understand the advantages of Python for algorithmic thinking and program-
ming.

• Compare Python with other programming languages in terms of simplicity
and effectiveness.

1.2 Key Ideas 9

Content:

• Why Python?

– Python’s simplicity and readability

– Comparison with other languages (e.g., C++, Java)

– Python’s role in modern software development and data science

Practical Situation:

• Demonstrate a basic Python script and compare it with an equivalent script
in another language.

1.2.4 Topic 4: Developing Algorithms and Flow Charts
Lesson Outcomes:

• Develop and represent algorithms using flowcharts.

• Understand properties of good algorithms.

Content:

• Introduction to Algorithms:

– Properties of good algorithms

• Flowchart Creation:

– Basic flowchart symbols and conventions

Practical Situation:

• Design flowcharts for simple algorithms (e.g., sorting a list of numbers).

1.2.5 Topic 5: Data Types and Arithmetic Operations in
Python

Lesson Outcomes:

• Understand and use basic data types and operators in Python.

• Perform arithmetic operations and handle expressions.

Content: - Introduction to Python Programming:

• Data types (int, float, str, etc.)

• Keywords and Variables

• Input and Output statements

• Operators and Arithmetic expressions

10 1 Course Outline

• Operator precedence and Evaluation of expressions

Practical Situation:

• Write a Python program that performs various arithmetic operations and
displays results.

1.2.6 Topic 6: Conditional Statements in Python
Lesson Outcomes:

• Implement and use conditional statements to control the flow of programs.

Content: - Types of Conditional Statements:

• if, if-else, elif, nested if-else, if-elif-else

• Practical Examples:

– Programs using conditional statements

Practical Situation:

• Create a Python program that determines if a number is positive, negative,
or zero.

1.2.7 Topic 7: Loop Structures in Python
Lesson Outcomes:

• Use loop structures to repeat actions and iterate over data.

Content:

• Introduction to Looping:

– for, while, nested loops

– break, continue, pass statements

– range function

• Sample Programs:

– Implementing various loop constructs

Practical Situation:

• Write a Python program that calculates the factorial of a number using
loops.

1.2.8 Topic 8: Functions in Python
Lesson Outcomes:

1.2 Key Ideas 11

• Define and use functions for modular programming.

• Understand function concepts including parameter passing and return val-
ues.

Content:

• Concept of Functions:

– Definition, Calling Functions

– Passing Parameters and Return Values

– Type Conversion and Coercion

• Advanced Function Concepts:

– Lambda functions

– Built-in Mathematical functions

• Sample Programs Using Functions

Practical Situation:

• Develop a Python program that uses functions to perform mathematical
operations.

1.2.9 Topic 9: String Operations in Python
Lesson Outcomes:

• Manipulate and process strings using Python’s string handling functions.

Content:

• Introduction to Strings:

– String creation and manipulation

• String Handling Functions:

– Commonly used functions (e.g., split(), join(), replace())

Practical Situation:

• Write a Python program that processes and formats user input strings.

1.2.10 Topic 10: Real-time/Technical Applications Using Data
Structures

Lesson Outcomes:

• Apply data structures (lists, tuples, dictionaries) to solve real-world prob-
lems.

12 1 Course Outline

Content:

• Lists, Tuples, Dictionaries:

– Concepts, operations, and functions

– Mutable vs Immutable data structures

• Applications:

– Identifying use cases

– Solving problems using lists, tuples, and dictionaries

Practical Situation:

• Create a Python program that manages a list of student records using lists
and dictionaries.

1.2.11 Topic 11: Micro Project
Lesson Outcomes:

• Apply Python concepts to develop a project relevant to the student’s field
of study.

Content:

• Project Development:

– Design and implementation of a simple project

– Application of learned concepts to a practical problem

Practical Situation:

• Develop and present a micro project related to the student’s branch of study.

1.3 Teaching Methodology
• Hands-on lab exercises

• Step-by-step problem-solving approach

• Regular assessments and feedback

1.4 Evaluation 13

1.4 Evaluation
• Lab exercises and practical implementation

• Micro Project

2
Basic Python Programming

Dynamic evaluation of user provided code and data visualisation

2.1 Introduction
This chapter introduce the python programming for beginers.

This book is created with Quarto and pyodide extension is cused for online
python scripting to demonstrate the python programming in this course site
itself.

See Knuth (1984) for additional discussion of literate programming.
a=10
print(a)

2.2 Examples

15

3
Sample Programs

3.1 Introduction to Python
In this tutorial, we will cover the basics of Python programming, including
data types, keywords, variables, input/output statements, operators, arith-
metic expressions, operator precedence, and evaluation of expressions.

3.2 Data Types
Python supports several built-in data types. Let’s explore some of the most
common ones:

• Integer (int): Represents whole numbers.
• Floating Point (float): Represents decimal numbers.
• String (str): Represents sequences of characters.
• Boolean (bool): Represents True or False.

Example 1

3.2.1 Static Template

Demonstrating different data types

Integer
a = 10
print("Integer:", a, type(a))

Float
b = 3.14
print("Float:", b, type(b))

17

18 3 Sample Programs

String
c = "Hello, Python!"
print("String:", c, type(c))

Boolean
d = True
print("Boolean:", d, type(d))

Integer: 10 <class 'int'>
Float: 3.14 <class 'float'>
String: Hello, Python! <class 'str'>
Boolean: True <class 'bool'>

3.2.2 Interactive Cell

Demonstrating different data types

Integer
a = 10
print("Integer:", a, type(a))

Float
b = 3.14
print("Float:", b, type(b))

String
c = "Hello, Python!"
print("String:", c, type(c))

Boolean
d = True
print("Boolean:", d, type(d))

3.2.3 Variables
Variables are used to store data in memory. A variable is created when you
assign a value to it using the = operator.
Variable assignment

x = 5
y = 2.5
z = x + y

3.2 Data Types 19

print("x =", x)
print("y =", y)
print("z =", z)

3.2.4 Input and Output Statements
Python provides the input() function to take user input and the print() func-
tion to display output.
Input and Output
name="justin"
age=32
#name = input("Enter your name: ")
#age = int(input("Enter your age: "))

print(f"Hello, {name}! You are {age} years old.")

3.2.5 Operators
Operators are special symbols used to perform operations on variables and
values. Python supports several types of operators:

Arithmetic Operators: +, -, *, /, //, %, ** Comparison Operators: ==, !=,
>, <, >=, <= Logical Operators: and, or, not Assignment Operators: =, +=,
-=, *=, /=, //=, %=, **=
Arithmetic Operations

a = 15
b = 4

addition = a + b
subtraction = a - b
multiplication = a * b
division = a / b
floor_division = a // b
modulus = a % b
exponentiation = a ** b

print("Addition:", addition)
print("Subtraction:", subtraction)
print("Multiplication:", multiplication)
print("Division:", division)

20 3 Sample Programs

print("Floor Division:", floor_division)
print("Modulus:", modulus)
print("Exponentiation:", exponentiation)

3.2.6 Arithmetic Expressions
An arithmetic expression is a combination of numbers, operators, and variables
that evaluates to a value.
Evaluating arithmetic expressions

expression = (5 + 2) * (10 - 3) / 2 ** 2
print("Expression Result:", expression)

3.2.7 Operator Precedence
Operator precedence determines the order in which operations are performed
in an expression. The following list shows the precedence from highest to
lowest:

** (Exponentiation) *, /, //, % (Multiplication, Division, Floor Division, Mod-
ulus) +, - (Addition, Subtraction)
Operator precedence

result = 5 + 3 * 2 ** 2 - 1
print("Operator Precedence Result:", result)

3.2.8 Evaluation of Expressions
Python evaluates expressions from left to right, following the precedence rules.
Evaluation of expressions

value = (10 + 5) * 2 - 3 / 3
print("Evaluation Result:", value)

3.2.9 Conditional Statements in Python
Conditional statements in Python allow the execution of specific code blocks
based on whether a condition is true or false. Let’s explore various types of
conditional statements.

3.2 Data Types 21

3.2.9.1 The if Statement

The if statement tests a specific condition. If the condition is true, the code
block under the if statement is executed.

Example
Example of an if statement

number = 10

if number > 0:
print(f"{number} is a positive number.")

Explanation

The above program checks if number is greater than 0. Since 10 is greater
than 0, the condition is true, and the message is printed.

3.2.9.2 The if-else Statement

The if-else statement allows you to execute one block of code if the condition
is true and another block if it is false.
Example of an if-else statement

number = -5

if number >= 0:
print(f"{number} is a non-negative number.")

else:
print(f"{number} is a negative number.")

Explanation

In this example, the program checks if number is greater than or equal
to 0. If true, it prints that the number is non-negative. Otherwise, it
prints that the number is negative.

Example 2
age = 20

if age >= 18:
print("You are eligible to vote.")

else:
print("You are not eligible to vote.")

22 3 Sample Programs

Explanation

This program checks if a person’s age is greater than or equal to 18. If
true, it prints that the person is eligible to vote. Otherwise, it states
they are not eligible to vote.

3.2.10 The elif Statement
The elif statement, short for “else if,” allows you to check multiple conditions
sequentially. If one of the conditions is true, the corresponding block of code
is executed.
Example of an elif statement

number = 0

if number > 0:
print(f"{number} is a positive number.")

elif number == 0:
print(f"{number} is zero.")

else:
print(f"{number} is a negative number.")

Explanation

Here, the program checks three conditions: whether the number is posi-
tive, zero, or negative. The elif statement handles the case where number
is exactly 0.

Another example of an elif statement

marks = 85

if marks >= 90:
grade = 'A'

elif marks >= 80:
grade = 'B'

elif marks >= 70:
grade = 'C'

else:
grade = 'F'

print(f"Your grade is {grade}.")

3.2 Data Types 23

Explanation

This program assigns a grade based on the marks obtained. Depending
on the range in which the marks fall, the corresponding grade is assigned
and printed.

3.2.10.1 Nested if-else Statements

Nested if-else statements allow you to include an if-else statement inside an-
other if-else block for handling more complex conditions.
Example of nested if-else statements

number = 25

if number > 0:
if number % 2 == 0:

print(f"{number} is a positive even number.")
else:

print(f"{number} is a positive odd number.")

Explanation

This example checks if a number is positive and then further checks
whether it is even or odd using nested if-else statements.

Another example of nested if-else statements

score = 92

if score >= 50:
if score >= 90:

print("Excellent!")
else:

print("Good job!")
else:

print("Better luck next time.")

Explanation

This program checks if a score is at least 50. If true, it further checks if
the score is 90 or above, printing “Excellent!” if it is, and “Good job!”
if it isn’t. If the score is below 50, it prints “Better luck next time.”

4
Summary

In summary, this book has no content whatsoever.

25

References

Knuth, Donald E. 1984. “Literate Programming.” Comput. J. 27 (2): 97–111.
https://doi.org/10.1093/comjnl/27.2.97.

27

https://doi.org/10.1093/comjnl/27.2.97

	Preface
	Preface
	Course Outline
	Course Overview
	Key Ideas
	Topic 1: Introduction to Algorithmic Thinking
	Topic 2: Familiarization with Computer Systems and Language Translators
	Topic 3: Justification for Using Python
	Topic 4: Developing Algorithms and Flow Charts
	Topic 5: Data Types and Arithmetic Operations in Python
	Topic 6: Conditional Statements in Python
	Topic 7: Loop Structures in Python
	Topic 8: Functions in Python
	Topic 9: String Operations in Python
	Topic 10: Real-time/Technical Applications Using Data Structures
	Topic 11: Micro Project

	Teaching Methodology
	Evaluation

	Basic Python Programming
	Introduction
	Examples

	Sample Programs
	Introduction to Python
	Data Types
	Static Template
	Interactive Cell
	Variables
	Input and Output Statements
	Operators
	Arithmetic Expressions
	Operator Precedence
	Evaluation of Expressions
	Conditional Statements in Python
	The elif Statement

	Summary
	References
	References

