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1 | Assignment 21
Newton’s Method for the Solution of
Equations

1.1 Introduction

Newton’s method is an iterative numerical technique used for finding approximations to the roots of
a real-valued function. It is particularly useful when solving nonlinear equations.
Given a function f (x), Newton’s method finds successively better approximations to the root x such
that f (x) = 0.

1.2 Mathematical Derivation

The core idea of Newton’s method is to use the tangent line at an initial guess x0 to approximate the
function.

1.2.1 Starting point

Given an initial guess x0, the goal is to find the root r such that f (r ) = 0.

x

y

f (x)

f (x0)
x0

f (x0)
x1

x2

Iteration to next guess

1.2.2 Newton’s method as the tangent line approximation

The equation of the tangent line to the function f (x) at x = x0 is:
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y = f (x0)+ f ′(x0)(x −x0)

Setting y = 0 to find where the tangent line intersects the x-axis:

0 = f (x0)+ f ′(x0)(x −x0)

Solving for x gives:

x1 = x0 − f (x0)

f ′(x0)

Thus, the update formula for Newton’s method is:

xn+1 = xn − f (xn)

f ′(xn)

1.2.3 Iterative process

Repeat the process until a sufficiently accurate approximation of the root is obtained. Stop when the
difference between successive iterations is less than a tolerance ϵ:

|xn+1 −xn | < ϵ

1.3 Order of convergence

Newton’s method has quadratic convergence near the root, provided that:

• f (x) is sufficiently smooth (twice continuously differentiable),

• The initial guess x0 is sufficiently close to the actual root,

• f ′(r ) ̸= 0, where r is the root of f (x).

1.3.1 Proof of quadratic convergence

Let the error at the n-th step be ϵn = xn − r . Using a Taylor expansion of f (x) around r , we get:

f (xn) = f (r )+ f ′(r )(xn − r )+ f ′′(ξn)

2
(xn − r )2

where ξn lies between xn and r .
Since f (r ) = 0, the above simplifies to:

f (xn) = f ′(r )ϵn +O (ϵ2
n)

Now, using the Newton update formula:

xn+1 = xn − f (xn)

f ′(xn)

Substituting the Taylor expansion for f (xn) into this formula, we can show that:

ϵn+1 ≈Cϵ2
n

where C is a constant dependent on f ′′(r ) and f ′(r ). This implies quadratic convergence: the error
at each step is proportional to the square of the error at the previous step.

Amrita School of Artifical Intelligence 8
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1.4 Stopping Criteria

Two common stopping criteria are:

• Relative Error: |xn+1 −xn |
|xn+1|

< ϵ

• Absolute Error:
|xn+1 −xn | < ϵ

1.5 Order of Complexity

1.5.1 Per iteration complexity

Each iteration involves evaluating f (xn) and f ′(xn). The complexity depends on the cost of these
evaluations.
For example, if f (x) is a polynomial of degree d , evaluating both f (x) and f ′(x) requires O (d) opera-
tions per iteration.

1.5.2 Overall complexity

Since Newton’s method converges quadratically, the number of iterations required to achieve a cer-
tain accuracy ϵ is O (loglog 1

ϵ ). Therefore, the total complexity is the product of the per-iteration com-
plexity and the number of iterations.
If each iteration is O (d) and the method requires O (loglog 1

ϵ ) iterations, then the overall complexity
is:

O (d · loglog
1

ϵ
)

1.6 Limitations

Even though the NR method offer fast convergence, there are still potential limitations. Two compu-
tationally striking limitations are:

• Initial Guess Sensitivity: Newton’s method requires a good initial guess. If the guess is far from
the actual root, the method may fail to converge.

• Derivative Calculation: If f ′(x) is zero or very small near the root, the method may fail or con-
verge slowly.

• Non-quadratic Convergence: If the root is not simple (e.g., f (x) has a higher-order root), the
method may not exhibit quadratic convergence.

1.7 Example

Let’s apply Newton’s method to find the square root of a number a by solving f (x) = x2 −a = 0.

1. Start with an initial guess x0.

2. Apply the Newton iteration:

xn+1 = xn − x2
n −a

2xn
= 1

2

(
xn + a

xn

)
This is the well-known method of Heron for computing square roots.

Amrita School of Artifical Intelligence 9



1. Assignment 21
Newton’s Method for the Solution of Equations

1.7.1 Computation examples

1. Find the square root of 700.

SOLUTION

Let x =p
700 =⇒ x2 = 700 and f (x) = x2 −700.

f (x) = x2 −700

f ′(x) = 2x

By Newton’s method,

xn+1 = xn − f (xn)

f ′(xn)

= xn − x2
n −700

2xn

= x2
n +700

2xn

Matlab code for this task is given below.

1 close(gcf)
2 x= -100:100;
3 y=x.^2 -700;
4 plot(x,y);
5 hold on
6 Xax= [ -101 101];
7 Xay=[0 0];
8 plot(Xax ,Xay);
9 hold on

10 z=100;
11 plot(z,z^2-700,'*');
12 sf=0.5 ;
13 for i= 1:10
14 z=z-sf*(z^2 -700) /(2*z);
15 hold on
16 plot(z,z^2-700,'*');
17 caption = sprintf('z=%0.2f',z);
18 title(caption , 'FontSize ', 20);
19 pause (.5);
20 end
21 hold on
22 z=-100;
23 plot(z,z^2-700,'*');
24 for i= 1:10
25 z=z-sf*(z^2 -700) /(2*z);
26 hold on
27 plot(z,z^2-700,'*');
28 caption = sprintf('z=%0.2f',z);
29 title(caption , 'FontSize ', 20);
30 pause (.5);
31 end
32 caption = sprintf('finished ');
33 title(caption , 'FontSize ', 20);

output of the code is shown in Figure 1.1

Amrita School of Artifical Intelligence 10
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Figure 1.1: Solution path of x =p
700 in Newton’s method.

2. Write a matlab code for finding the cube root of a positive number.

SOLUTION

Matlab code for this task is given below.

1 a = input('Enter a positive number: ');
2 if a <= 0
3 error('Please enter a positive number.');
4 end
5 x = a/2;
6 tol = 1e-6;
7 max_iter = 1000;
8 approximations = zeros(max_iter , 5);
9 iterations = 0

10 for iter = 1:
11 f_x = x^3 - a;
12 f_prime_x = 3*x^2;
13 x_new = x - f_x / f_prime_x;
14 approximations(iter , 1) = iter;
15 approximations(iter , 2) = x;
16 approximations(iter , 3) = f_x;
17 approximations(iter , 4) = x_new;
18 approximations(iter , 5) = x_new^3 - a;
19 if abs(x_new - x) < tol
20 iterations = iter;
21 break;
22 end
23 x = x_new;
24 end
25 approximations = approximations (1: iterations , :);
26 disp(['The cube root of ', num2str(a), ' is approximately ',

num2str(x
27 T = array2table(approximations , 'VariableNames ', {'Sl_No', 'X_n

', 'f_X_n', 'x_next ', 'f_x_next '});
28 disp(T);

Output of the code is shown below.

Amrita School of Artifical Intelligence 11
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The cube root of 9 is approximately 2.0801

Sl_No X_n f_X_n x_next f_x_next
_____ ______ _________ ______ __________

1 4.5 82.125 3.1481 22.201
2 3.1481 22.201 2.4015 4.8493
3 2.4015 4.8493 2.1212 0.54397
4 2.1212 0.54397 2.0809 0.010269
5 2.0809 0.010269 2.0801 3.901e-06
6 2.0801 3.901e-06 2.0801 5.6488e-13

3. Create a dataset (x array and y array) for the step plot and code for getting the plot. Use the floor
function y = 0.5+ [x] , 0 ≤ x ≤ 4.

SOLUTION

Matlab code for this task is given below.

1 x = linspace(0, 5, 1000);
2 segments = [0 1; 1 2; 2 3; 3 4; 4 5];
3 y_values = 0.5 + floor(segments (:,1));
4 figure;
5 hold on;
6 for i = 1:size(segments , 1)
7 x_segment = linspace(segments(i, 1), segments(i, 2), 200;
8 y_value = 0.5 + floor(segments(i, 1));
9 plot(x_segment , y_value * ones(size(x_segment)), 'LineWidth

', 1.5);
10 end
11 xlabel('x');
12 ylabel('y');
13 title('Graph of floor function ');
14 grid on;
15 hold off;

Output of the code is shown in Figure 1.2.

Figure 1.2: Graph of the floor function.

Amrita School of Artifical Intelligence 12
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4. Expand a function f (x) = x3 at x0 = 1 using Madhava series and plot all the functions involved
in a single diagram. Limit x to −3 to 3 .

SOLUTION

Matlab ocde for this task is given below.

1 x = linspace(-3, 3, 1000);
2 f_x = x.^3;
3 x0 = 1;
4 m_series = 1 + 3*(x - x0) + 3*(x - x0).^2 + (x - x0).^3;
5 figure;
6 hold on;
7 plot(x, f_x , 'k', 'LineWidth ', 2, 'DisplayName ', 'f(x) = x^3');
8 plot(x, m_series , 'r--', 'LineWidth ', 1.5, 'DisplayName ', '

Madhava Series Expansion ');
9 xlabel('x');

10 ylabel('y');
11 title('Function f(x) = x^3 and its Madhava Series Expansion at

x0 = 1');
12 legend;
13 grid on;
14 hold off;

Output of the code is shown in Figure 1.3.

Figure 1.3: Approximation of f (x) = x3 about x = 1 using Madhava series.

1.8 Conclusion

Newton’s method is a numerical tool for solving nonlinear equations, especially when the function is
differentiable and a good initial guess is available. With quadratic convergence, it often outperforms
simpler methods like the bisection method in terms of speed, but its sensitivity to initial conditions
and the need for derivative evaluation are its main drawbacks.
RESULTS

1. Fast converging numerical method to approximate the root of an algebraic or transcendental
equation is revisited.

2. Madhava-Taylor series approximation for continuous function is revisited and compare the se-
ries approximation with orginal function.
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2 | Assignment 22
Concept of Full Rank and Rank Defi-
cient Matrices

2.1 Rank and Independence

In linear algebra, the rank of a matrix is a fundamental concept that reveals important information
about the matrix’s structure, specifically the degree of linear independence of its rows or columns.
A matrix A ∈Rm×n is said to be full rank if either:

• All columns of A are linearly independent, or

• All rows of A are linearly independent.

This means that:

If rank(A) = min(m,n),

then A is full rank.
For example:

• If A has more rows than columns (i.e., m > n), full rank implies that all columns are indepen-
dent, and rank(A) = n.

• If A has more columns than rows (i.e., m < n), full rank implies that all rows are independent,
and rank(A) = m.

A matrix is said to be rank deficient when it does not have full rank, i.e., when both the rows and
columns are not linearly independent. For a matrix A ∈Rm×n , the matrix is rank deficient if:

rank(A) < min(m,n)

Rank and Invertibility

The concept of matrix rank is crucial for understanding the invertibility of a matrix:

• A square matrix A ∈ Rn×n is invertible if and only if it is full rank, i.e., rank(A) = n. This implies
that all rows and all columns are linearly independent.

For non-square matrices, left and right inverses depend on whether the rows or columns are inde-
pendent:

• If all columns of A are independent, the matrix A is full column rank and has a left inverse.

• If all rows of A are independent, the matrix A is full row rank and has a right inverse.
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Rank-Deficiency in Square Matrices and Zero Eigenvalues

In square matrices A ∈Rn×n , the rank also affects the eigenvalues of the matrix. Specifically:

• A square matrix that is rank deficient will have one or more zero eigenvalues. This is because a
rank-deficient matrix has fewer than n linearly independent rows and columns, meaning there
are fewer than n non-zero pivot values in its row-echelon form, leading to zero eigenvalues.

If a square matrix is full rank (i.e., rank(A) = n), it has no zero eigenvalues, and thus it is invertible.
The rank deficiency directly determines the number of zero eigenvalues:

Number of zero eigenvalues = n − rank(A)

For instance, if a matrix A ∈R4×4 has a rank of 3, then it has exactly one zero eigenvalue, since 4−3 = 1.

Inverses of a Matrix

In this section, we discuss the conditions and formulas for the left and right inverses of a matrix A.

Conditions for Inverses

1. Left Inverse: A matrix A of size m ×n has a left inverse A−1
left if:

• m ≥ n (more rows than columns).

• The columns of A are linearly independent, which implies rank(A) = n.

2. Right Inverse: A matrix A of size m ×n has a right inverse A−1
right if:

• m ≤ n (more columns than rows).

• The rows of A are linearly independent, which implies rank(A) = m.

Formulas for Inverses

1. Left Inverse: If A has a left inverse A−1
left, it satisfies:

A−1
left A = In

The left inverse can be computed as:

A−1
left = (AT A)−1 AT (if columns of A are independent)

This is valid when A is m ×n with m ≥ n.
2. Right Inverse: If A has a right inverse A−1

right, it satisfies:

A A−1
right = Im

The right inverse can be computed as:

A−1
right = AT (A AT )−1 (if rows of A are independent)

This is valid when A is m ×n with m ≤ n.

2.1.1 Summary

- Left Inverse exists if rank(A) = n (columns are independent):

A−1
left = (AT A)−1 AT

- Right Inverse exists if rank(A) = m (rows are independent):

A−1
right = AT (A AT )−1

Amrita School of Artifical Intelligence 16
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2.2 Assignment

1. Create a 5×4 random integer matrix A with rank 2 with single matlab command. (Also verify).

SOLUTION

A matrix with 2 rows and 4 columns created from random integer will be a matrix of rank 2.
Matlab code for this task is given below.

1 A = randi(10, 5, 2) * randi(10, 2, 4);
2
3 % Verify the rank of the matrix
4 rank_A = rank(A);
5 disp('Matrix A:');

Output of the code is shown below.

Matrix A:
25 74 61 61
24 75 48 48
18 60 26 26
10 32 18 18
17 52 37 37

Rank of Matrix A:
2

2. Create a 4×5 random integer matrix A with rank 4 with single matlab command . (Also verify).

SOLUTION

Matlab code for this task is given below.

1 A = randi(10, 4, 4) * randi(10, 4, 5);
2
3 % Verify the rank of the matrix
4 rank_A = rank(A);
5 disp('Matrix A:');

Output of the code is shown below.

Matrix A:
198 155 154 251 146
103 153 118 184 126
183 195 149 259 185
199 231 191 303 201

Rank of Matrix A:
4

3. if all columns are independent, number of rows in the matrix must be at least equal to number
of columns. Prove this result computationally.

SOLUTION

Let us create an arbitrary 4×4 matrix A with 4 rows in such a way that each row is created from
random integers. This confirm that all the rows are independent. Then we find the rank. Since
the rows are independent, rank will be 4. But the matrix A is arbitrary, so this result can be
generalized. Matlab code for this task is given below.

Amrita School of Artifical Intelligence 17
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1 nRows = 4;
2 A = [];
3 while true
4 newRow = randi(2, 1, 4);
5 A = [A; newRow ];
6 if rank(A) == nRows
7 break;
8 end
9 end

10 disp('Matrix A:');

Output of the code is shown below.

Matrix A:
1 2 1 2
1 2 2 1
2 1 1 1
1 1 1 1

Rank of Matrix A:
4

4. Using matlab create five 5×5 matrix with rank deficiency 2. Then find number of zero-eigen
values. Check whether there are at least 2 zero eigenvalues.

SOLUTION

Matlab code for this task is given below.

1 num_matrices = 5
2 matrices = cell(num_matrices , 1);
3 zero_eigenvalues_count = zeros(num_matrices , 1);
4 for i = 1: num_matrices
5 A = randi(10, 5, 3);
6 B = A * A';
7 eigenvalues = eig(B);
8 zero_eigenvalues_count(i) = sum(abs(eigenvalues) < 1e-10);
9 matrices{i} = B;

10 end
11 for i = 1: num_matrices
12 fprintf('Matrix %d:\n', i);
13 disp(matrices{i});
14 fprintf('Number of zero eigenvalues: %d\n\n',

zero_eigenvalues_count(i));
15 end
16 all_at_least_two_zeros = all(zero_eigenvalues_count >= 2);
17 if all_at_least_two_zeros
18 disp('All matrices have at least 2 zero eigenvalues.');
19 else
20 disp('Not all matrices have at least 2 zero eigenvalues.');
21 end

Output of the code is shown below.
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Matrix 1:
78 82 101 56 41
82 107 118 55 43

101 118 166 78 81
56 55 78 43 37
41 43 81 37 49

Number of zero eigenvalues: 2
Matrix 2:

73 50 92 68 115
50 54 49 33 92
92 49 129 99 144
68 33 99 77 108

115 92 144 108 213
Number of zero eigenvalues: 2
Matrix 3:

66 67 30 45 29
67 217 142 144 133
30 142 120 120 110
45 144 120 125 110
29 133 110 110 101

Number of zero eigenvalues: 2
Matrix 4:

155 99 113 68 118
99 81 63 75 90

113 63 107 32 106
68 75 32 86 76

118 90 106 76 140
Number of zero eigenvalues: 2
Matrix 5:

77 92 129 44 48
92 129 158 44 58

129 158 217 72 80
44 44 72 29 27
48 58 80 27 33

Number of zero eigenvalues: 2

All matrices have at least 2 zero eigenvalues.

In all the five cases, number of zero eigen values are 2.

5. Manually create a 5×5 square matrix for which number of zero-eigen values is more than the
number of rank-deficiency.

SOLUTION

For this task choose an upper triangular matrix with four zero rows. So number of zero eigen
values is 4. But rank is 2. Hence rank deficiency is 5−2 = 3.

A =


1 1 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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6. For the matrix,

[
1 2 3
4 5 6

]
find right inverse. Verify the result.

SOLUTION

Given the matrix

A =
[

1 2 3
4 5 6

]
Now,

AT =
1 4

2 5
3 6



A AT =
[

1 2 3
4 5 6

]1 4
2 5
3 6

=
[

14 32
32 77

]

The inverse is:

(A AT )−1 = 1

54

[
77 −32
−32 14

]
Compute the Right Inverse:

A−1
right = AT (A AT )−1 =

1 4
2 5
3 6

[ 77
54 −32

54
−32

54
14
54

]
=

−17
18

4
9

−1
9

1
9

13
18 −2

9


Matlab code for this task is given below.

1 A = [1 2 3; 4 5 6];
2 format rational;
3 B = A' * (A * A')^(-1);
4 identity_matrix = A * B;
5 disp('Matrix A:');
6 disp(A);
7 disp('Right Inverse B:');
8 disp(B);
9 disp('Verification (A * B):');

10 disp(identity_matrix);

Output of the code is:

Matrix A:
1 2 3
4 5 6

Right Inverse B:
-17/18 4/9
-1/9 1/9
13/18 -2/9

Verification (A * B):
1 *
* 1
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Takeaway

• A matrix is full rank if all rows or all columns are linearly independent, with rank(A) = min(m,n).

• A matrix is rank deficient if both rows and columns are linearly dependent, with rank(A) <
min(m,n).

• For square matrices, rank deficiency implies the presence of zero eigenvalues, and the number
of zero eigenvalues equals n − rank(A).

• Full rank matrices are invertible, and their inverse properties depend on whether the matrix is
full row rank or full column rank.

This understanding of rank, linear independence, and eigenvalues provides essential insight into the
behavior of matrices in various applications, including solving systems of linear equations and ana-
lyzing matrix transformations.

RESULTS

1. Concept of rank deficiency is revisited.

2. Various matrix inverses are discussed.
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Newton Fractals

3.1 Concept

Newton Fractals are visual representations derived from Newton’s method for finding roots of com-
plex functions. Named after Sir Isaac Newton, this iterative method is used to approximate the roots
of real-valued functions. When applied to complex functions, the iterations can produce stunning
and intricate patterns, revealing the underlying structure of the function’s roots.
In essence, a Newton Fractal is generated by iterating the Newton method for a complex function
and coloring the points in the complex plane based on the root they converge to and the speed of
convergence.

3.2 The Beauty of Newton Fractals

1. Visual Complexity: Newton Fractals exhibit stunning visual complexity. Each fractal can look
drastically different depending on the function and the initial conditions chosen. The interplay
of colors and shapes forms intricate designs that are both mesmerizing and mathematically
rich.

2. Mathematical Insight: They provide insights into the behavior of complex functions. The pat-
terns reveal information about the stability of roots, as well as the regions of attraction for dif-
ferent roots.

3. Aesthetic Appeal: Artists and mathematicians alike are drawn to the beauty of these fractals, of-
ten using them in visual art and educational contexts to illustrate the harmony between math-
ematics and aesthetics.

3.3 Computational Steps for Creating Newton Fractals Using MATLAB

Here are the key steps to create a Newton Fractal in MATLAB:

1. Define the Complex Function: Choose a complex function for which you want to find the roots.
For example, f (z) = z3 −1.

2. Define the Newton Iteration Function:

zn+1 = zn − f (zn)

f ′(zn)

where f ′(z) is the derivative of f (z).

3. Set Up the Grid in the Complex Plane: Create a grid of complex numbers over a defined range.

4. Initialize the Iteration: For each point in the grid, initialize the complex number z to that point
and apply the Newton iteration.
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5. Determine Convergence: Track the number of iterations until convergence to a root or until a
maximum number of iterations is reached.

6. Color the Points: Assign colors based on the root each point converges to and the speed of
convergence.

7. Visualize the Result: Use a suitable plotting function to visualize the resulting fractal.

3.4 MATLAB Code Example

Here’s a simple MATLAB code to generate a Newton Fractal for the function f (z) = z3 −1:

1 % Define the function and its derivative
2 f = @(z) z.^3 - 1; % The function
3 df = @(z) 3*z.^2; % Derivative of the function
4
5 % Set up the grid of complex numbers
6 x = linspace(-2, 2, 1000); % Real part
7 y = linspace(-2, 2, 1000); % Imaginary part
8 [X, Y] = meshgrid(x, y); % Create a grid
9 Z = X + 1i * Y; % Complex grid

10
11 % Initialize iteration parameters
12 max_iter = 50; % Maximum number of iterations
13 colors = zeros(size(Z)); % Array for storing colors
14
15 % Perform Newton 's method
16 for k = 1: max_iter
17 Z_old = Z; % Store the previous value
18 Z = Z - f(Z)./df(Z); % Update the values using Newton 's method
19
20 % Determine convergence (roots of z^3 - 1 are 1, -0.5 + 0.866i,

-0.5 - 0.866i)
21 converged = abs(Z - 1) < 0.01; % Root at 1
22 colors(converged) = 1; % Color for root 1
23 converged = abs(Z + 0.5 + 0.866i) < 0.01; % Root at -0.5 +

0.866i
24 colors(converged) = 2; % Color for root -0.5 + 0.866i
25 converged = abs(Z + 0.5 - 0.866i) < 0.01; % Root at -0.5 -

0.866i
26 colors(converged) = 3; % Color for root -0.5 - 0.866i
27 end
28
29 % Plot the result
30 figure;
31 imagesc(x, y, colors);
32 colormap(hsv(3)); % Use a colormap for three roots
33 axis xy;
34 title('Newton Fractal for $f(z) = z^3 - 1$','Interpreter ','latex');
35 xlabel('Re(z)');
36 ylabel('Im(z)');
37 colorbar;

Output of this code is shown in Figure 3.1.
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Figure 3.1: Newton fractal for the function f (z) = z3 −1.

3.5 Applications of Newton Fractals

Newton Fractals have a variety of applications across different fields. Here are some key areas where
they are particularly useful:

• Visualization of Complex Functions: Newton Fractals provide a visual representation of the
behavior of complex functions, making it easier for students to understand concepts like roots,
convergence, and stability.

• Teaching Tool: They can be used as teaching aids in mathematics courses, particularly in cal-
culus and complex analysis, to illustrate the concepts of iterative methods and their geometric
interpretations.

• Fractal Generation: In computer graphics, Newton Fractals can be generated to create visually
striking images and animations. They contribute to the field of generative art and are used in
artistic applications.

• Procedural Generation: Fractals can be used in the procedural generation of textures, land-
scapes, and other visual elements in video games and simulations.

• Root-Finding Algorithms: Newton’s method itself is widely used in numerical analysis for solv-
ing equations, and visualizing its behavior through fractals can help researchers understand the
efficiency and convergence properties of the method.

• Stability Analysis: The patterns generated by Newton Fractals can help analyze the stability of
numerical algorithms by visualizing the convergence regions for different initial conditions.

• Bifurcation Analysis: Newton Fractals can be used to study bifurcations in dynamical systems,
providing insights into how systems change behavior with varying parameters.

• Complex Dynamics: They are useful in the study of complex dynamics and chaos, helping
researchers visualize and analyze the behavior of dynamical systems.
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• Signal Processing: Concepts from fractal geometry can be applied in signal processing, espe-
cially in the analysis of non-linear signals and systems.

• Material Science: Fractals can model complex structures in materials, aiding in the under-
standing of physical properties and behaviors.

• Digital Art: Artists leverage the beauty of Newton Fractals in digital art, creating unique pieces
that are mathematically inspired.

• Exhibitions: Fractals are often featured in mathematical art exhibitions, where they attract at-
tention for their intricate and colorful patterns.

3.5.1 More examples with different approach

Another way of creating fractals from f (z) = z4 −1 is shown below.

1 function newton_fractal
2 NITER = 50;
3 threshold = .001;
4 [xs, ys] = meshgrid(linspace(-1, 1, 300), linspace(-1, 1, 300))

;
5 solutions = xs(:) + 1i * ys(:); % Use '1i' for imaginary unit
6 select = 1:numel(xs);
7 niters = NITER * ones(numel(xs), 1);
8
9 for iteration = 1:NITER

10 oldi = solutions(select);
11 solutions(select) = oldi - f(oldi) ./ fprime(oldi);
12
13 differ = (oldi - solutions(select));
14 converged = abs(differ) < threshold;
15 problematic = isnan(differ);
16 niters(select(converged)) = iteration;
17 niters(select(problematic)) = NITER + 1;
18 select(converged | problematic) = [];
19 end
20
21 niters = reshape(niters , size(xs));
22 solutions = reshape(solutions , size(xs));
23 imagesc(niters);
24 colormap(jet);
25 colorbar;
26 xlabel('Real Part');
27 ylabel('Imaginary Part');
28 title('Newton Fractals: Root Finding for $z^4 - 1$', '

Interpreter ', 'latex');
29 end
30 function res = f(x)
31 res = (x.^4) - 1;
32 end
33 function res = fprime(x)
34 res = 4*x.^3;
35 end

Output of the code is shown in Figure 3.2.
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Figure 3.2: Newton Fractal from f (z) = z4 −1.

3.6 Newton Fractal: Detailed Explanation along with Code

Matlab code given below creates a fractal from a more complicated complex function, f (z) = z3−1+
0.1

(z −0,5)2 with a singular point at z = 0.5.

1 function newton_fractal
2 NITER = 40;
3 threshold = 0.001;
4 [xs, ys] = meshgrid(linspace (-1.5, 1.5, 600), linspace (-1.5,

1.5, 600));
5 solutions = xs(:) + 1i * ys(:);
6 select = 1:numel(xs);
7 niters = NITER * ones(numel(xs), 1);
8
9 for iteration = 1:NITER

10 oldi = solutions(select);
11
12 solutions(select) = oldi - f(oldi) ./ fprime(oldi);
13
14 differ = (oldi - solutions(select));
15 converged = abs(differ) < threshold;
16 problematic = isnan(differ);
17
18 niters(select(converged)) = iteration;
19 niters(select(problematic)) = NITER + 1;
20 select(converged | problematic) = [];
21 end
22
23 niters = reshape(niters , size(xs));
24 solutions = reshape(solutions , size(xs));
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25
26 imagesc(niters);
27 colormap(jet);
28 colorbar;
29 xlabel('Real Part');
30 ylabel('Imaginary Part');
31 title('Newton Fractals: Root Finding for $f(x) = x^3 - 1 + \

frac {0.1}{(x - 0.5) ^2}$', 'Interpreter ', 'latex');
32 axis equal; % Equal scaling for x and y axes
33 end
34
35 function res = f(x)
36 % Define the complex function
37 res = (x.^3) - 1 + (0.1 ./ (x - 0.5) .^2);
38 end
39
40 function res = fprime(x)
41 res = 3 * x.^2 - (0.2 ./ (x - 0.5) .^3);
42 end

Output of the code is shown in Figure 3.3.

Figure 3.3: Newton Fractal for f (z) = z3 −1+ 0.1

(z −0,5)2 .

Following paragraph provides a detailed explanation of the MATLAB code used to generate a Newton
fractal based on the function f (x) = x3 −1+ 0.1

(x−0.5)2 .

Function Declaration

function newton_fractal

This line defines a MATLAB function named newton_fractal. When executed, it will run all the code
within this function.
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Initialization of Parameters

NITER = 40; % Maximum number of iterations
threshold = 0.001; % Convergence threshold

• NITER: Sets the maximum number of iterations for Newton’s method. A higher number allows
for more refinement in the fractal’s detail.

• threshold: Specifies the convergence criteria. If the difference between the old and new esti-
mates of a solution is less than this value, we consider the iteration to have converged.

Grid Creation

[xs, ys] = meshgrid(linspace(-1.5, 1.5, 600), linspace(-1.5, 1.5, 600));
solutions = xs(:) + 1i * ys(:); % Combine into complex numbers

• meshgrid: Creates two matrices, xs and ys, that contain a grid of complex numbers over the
specified range [−1.5,1.5] for both the real and imaginary parts.

• solutions: Combines the two matrices into a single vector of complex numbers by converting
xs and ys into column vectors using the (:) operator. The imaginary unit 1i is used to create
complex numbers.

Iteration Preparation

select = 1:numel(xs);
niters = NITER * ones(numel(xs), 1); % Initialize iteration counts

• select: An index array that initially selects all the grid points for iteration.

• niters: Initializes the count of iterations for each point in the grid to NITER, indicating that no
points have converged yet.

Newton’s Method Iteration

for iteration = 1:NITER
oldi = solutions(select);

% Newton's method iteration
solutions(select) = oldi - f(oldi) ./ fprime(oldi);

% Check for convergence or NaN (division by zero)
differ = (oldi - solutions(select));
converged = abs(differ) < threshold;
problematic = isnan(differ);

niters(select(converged)) = iteration;
niters(select(problematic)) = NITER + 1;
select(converged | problematic) = [];

end

• For Loop: Runs for up to NITER times, applying Newton’s method to each point in the solutions
vector.

• Newton’s Method Calculation:

– oldi: Stores the previous estimates of the roots for the currently selected points.
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– solutions(select): The formula applies Newton’s method:

zi+1 = zi − f (zi )

f ′(zi )

The new estimates are calculated by subtracting the value of the function divided by its
derivative from the old estimates.

• Convergence Check:

– differ: Computes the difference between the old and new estimates.

– converged: A logical array checks which points have converged based on the threshold.

– problematic: Checks for any NaN values, which can occur if the derivative is zero (division
by zero).

• Update Iteration Counts:

– For those points that have converged, the iteration count is updated to reflect how many
iterations it took for convergence.

– Points that either converged or encountered problems are removed from select, reduc-
ing the number of points for subsequent iterations.

Reshaping Results

niters = reshape(niters, size(xs));
solutions = reshape(solutions, size(xs));

After the iterations are complete, the niters and solutions arrays are reshaped back into the origi-
nal grid format for visualization. This allows us to plot the number of iterations taken for each point
in the complex plane.

Visualization

1 imagesc(niters);
2 colormap(jet);
3 colorbar;
4 xlabel('Real Part');
5 ylabel('Imaginary Part');
6 title('Newton Fractals: Root Finding for $f(x) = x^3 - 1 + \frac

{0.1}{(x - 0.5) ^2}$', 'Interpreter ', 'latex');
7 axis equal;

• imagesc(niters): Displays the niters array as an image, where each pixel color corresponds
to the number of iterations taken for convergence at that point in the complex plane.

• colormap(jet): Sets the color map to "jet," which uses a gradient of colors.

• colorbar: Adds a color bar on the side of the image to indicate how the colors correspond to
iteration counts.

• xlabel and ylabel: Label the axes with "Real Part" and "Imaginary Part."

• title: Sets the title of the plot, using LaTeX formatting for a mathematical expression.

• axis equal: Ensures that the aspect ratio of the x and y axes is equal, preserving the shape of
the fractal.
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Function Definitions

function res = f(x)
res = (x.^3) - 1 + (0.1 ./ (x - 0.5).^2);

end

function res = fprime(x)
res = 3 * x.^2 - (0.2 ./ (x - 0.5).^3);

end

These functions define the complex polynomial f (x) and its derivative f ′(x). Changing this function
based on f (x), we will get different fractals.

RESULTS

Newton fractals and its applications are discussed.
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Key Concepts

Let A be an m ×n matrix. Since A is not necessarily a square matrix, it may not have a usual
inverse. However, it can have left or right inverses under certain conditions based on its rank:

• Left Inverse: If A has full column rank (rank n), then a left inverse A−1
left exists such that:

A−1
left A = In

where In is the identity matrix of size n ×n.

• Right Inverse: If A has full row rank (rank m), then a right inverse A−1
right exists such that:

A A−1
right = Im

where Im is the identity matrix of size m ×m.

• Pseudo-Inverse: If A is rank deficient, it will have a pseudo-inverse A+. Every matrix has
a pseudo-inverse, which can be computed using Singular Value Decomposition (SVD).
The pseudo-inverse can be used to find least-squares solutions for systems of equations.

For the equation Ax = b where b lies in the column space of A, the solution can be obtained using the
following conditions:

Independent Columns: If the columns of A are independent, the left inverse A−1
left gives a unique

solution.

Independent Rows: If the rows of A are independent, the right inverse A−1
right provides a solution.

Here, the system of equations may have infinite solutions, and the solution obtained is the least-
norm solution. Other solutions can be derived by adding a right null space vector to the solution
vector obtained using the right inverse.

Pseudo-Inverse: The pseudo-inverse will provide a solution in all cases, corresponding to a least-
norm solution from the row space.

In scenarios where b does not lie in the column space, the pseudo-inverse A+ will provide a solution
that corresponds to the least-norm solution, where b is projected onto the column space.

4.1 Left Inverse

If the columns of A are independent, there exists a matrix A−1
left such that:

A−1
left A = In
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Example

Let us create a 3×2 matrix with 2 independent columns:

A =
1 2

2 3
3 4


To find the left inverse:

A−1
left = A′(A A′)−1

Matlab code for this task is given below.

1 A = [1 2; 2 3; 3 4];
2 A_left_inv = A' * inv(A * A');
3 disp("Left Inverse of A is:");
4 disp(A_left_inv);

Pseudo-inverse

The pseudo-inverse A+ can be computed as:

A+ = A′(A A′)−1

Matlab code for this task is given below.

1 disp(pinv(A));

Both the left inverse and the pseudo-inverse yield the same result for matrices with independent
columns.

4.2 Right Inverse

If the rows of A are independent, we can find a right inverse A−1
right such that:

A A−1
right = Im

Example

Let:

A =
[

1 2
3 4

]
Matlab code for this task is given below.

1 A = [1 2; 3 4];
2 A_right_inv = inv(A * A') * A';
3 disp("Right Inverse of A is:");
4 disp(A_right_inv);

Pseudo-inverse

To compute the pseudo-inverse:

1 disp(" Pseudo Inverse is:");
2 disp(pinv(A));

Both the right inverse and the pseudo-inverse yield the same result for matrices with independent
rows.
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4.3 Pseudo-Inverse

What is the Pseudo-Inverse Doing?

The pseudo-inverse A+ is utilized in scenarios where the matrix is not invertible or where we seek the
least-squares solution. The key characteristics of the pseudo-inverse include:

• Least-Norm Solution: It finds the solution x that minimizes the norm of the residual ||Ax −b||.

• Use in SVD: The pseudo-inverse is derived from the singular value decomposition (SVD) of the
matrix A. If:

A =UΣV ′

Then, the pseudo-inverse is given by:

A+ =V Σ+U ′

where Σ+ is formed by taking the reciprocal of the non-zero elements of Σ and transposing the
matrix.

Example Case 1: columns independent

Assume a case where the columns of A are independent and b is in the column space. The solution x
obtained using the pseudo-inverse is the same as that obtained through Gaussian elimination.

Example

Let:

A =
1 2

2 3
3 4

 , b =
5

6
7


Matlab code for this task is given below.

1 A = [1 2; 2 3; 3 4];
2 b = [5; 6; 7];
3 x_pseudo = pinv(A) * b;
4 disp(" Solution using Pseudo -Inverse :");
5 disp(x_pseudo);

Example Case 2: columns dependent

Assume a case where the columns of A are dependent and b is not in the column space. In this
case, while there may not be a solution for Ax = b, the pseudo-inverse can still provide a solution
corresponding to the least norm.

4.4 Assignment

1. Demonstrate through matlab code that pinv(A) and A+
l e f t =

(
AT A

)−1
AT produce same matrix

for any matrix A whose columns are independent.

SOLUTION

Matlab code for this task is given below.
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1 format RAT
2 A=[1 2 3; 5 7 8; 11 13 17];
3 disp("Left Inverse of A is:")
4 AinvR=inv(A'*A)*A';
5 disp(AinvR)
6 disp(" Pseudo Inverse is:")
7 disp(pinv(A))

Output of the code is shown below.

Left Inverse of A is:
-1 -1/3 1/3
-1/5 16/15 -7/15
4/5 -3/5 1/5

Pseudo Inverse is:

-1 -1/3 1/3
-1/5 16/15 -7/15
4/5 -3/5 1/5

2. Give 2 more examples with different matrix size to generalize this concept.

SOLUTION

Matlab code for this task is given below.

1 A1=[2 3 11; 0 4 9; 1 7 9]
2 disp("Left Inverse of A is:")
3 A1invl=inv(A1 '*A1)*A1 ';
4 disp(A1invl)
5 disp(" Pseudo Inverse is:")
6 disp(pinv(A1))
7
8 A2=[1 3; 1 5]
9 disp("Left Inverse of A is:")

10 A1invl=A2 '*inv(A2*A2 ');
11 disp(A1invl)
12 disp(" Pseudo Inverse is:")
13 disp(pinv(A2))

Output of the code is shown below.

A1 =
2 3 11
0 4 9
1 7 9

Left Inverse of A is:

27/71 -50/71 17/71
-9/71 -7/71 18/71
4/71 11/71 -8/71

Pseudo Inverse is:

27/71 -50/71 17/71
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-9/71 -7/71 18/71
4/71 11/71 -8/71

A2 =
1 3
1 5

Left Inverse of A is:
5/2 -3/2

-1/2 1/2
Pseudo Inverse is:

5/2 -3/2
-1/2 1/2

3. Demonstrate through matlab code that pinv(A) and A+
r i g ht AT

(
A AT )−1

)
produce the same

matrix for any matrix A whose rows are independent.

SOLUTION

Matlab code for this task is given below.

1 A5=[1 0 1; 0 1 1];
2 disp("Right Inverse of A is:")
3 A1invl=A2 '*inv(A2*A2 ');
4 disp(A1invl)
5 disp(" Pseudo Inverse is:")
6 disp(pinv(A2))

Output of the code is shown below.

Right Inverse of A is:
5/2 -3/2

-1/2 1/2
Pseudo Inverse is:

5/2 -3/2
-1/2 1/2

4. Give 2 examples with different matrix size.

SOLUTION

Matlab code for this task is given below.

1 A5=randi ([0,10],4,5);
2 disp("Right Inverse of A is:")
3 A5invl=A5 '*inv(A5*A5 ');
4 disp(A5invl)
5 disp(" Pseudo Inverse is:")
6 disp(pinv(A5))

Output of the code is shown below.

Right Inverse of A is:
-56/1969 -172/1735 161/979 -397/6136

-155/1627 309/2915 -613/77919 529/9086
16/493 21/743 347/155110 -187/7814

503/7882 79/806 -247/3179 -123/2179
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155/3272 -82/1067 51/12506 287/2941
Pseudo Inverse is:

-56/1969 -172/1735 161/979 -397/6136
-155/1627 309/2915 -613/77919 529/9086

16/493 21/743 347/155110 -187/7814
503/7882 79/806 -247/3179 -123/2179
155/3272 -82/1067 51/12506 287/2941

The pseudo-inverse serves as a powerful tool to handle underdetermined or overdetermined systems
of equations, providing least-norm solutions and projections onto the relevant subspaces. Under-
standing the pseudo-inverse requires familiarity with SVD, which is crucial for interpreting solutions
in the context of linear algebra applications.

RESULTS

Right, left, and pseudo inverses of a matrix are revisited and computationally verified under what
condition the pseudo inverse coincides with the left/right inverse of a matrix.
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5 | Assignment 25
LU Decomposition of Matrices

5.1 Introduction

This lesson is a revision of the LU decomposition. LU decomposition of a matrix A is given by A = LU ,
where L is a lower triangular matrix with 1s on the principal diagonal and U is an upper triangular
matrix. In terms of the elementary matrices, this L matrix capture the elementary transformation on
A that make it reduced in to U .

Consider the matrix A =

 2 1 1
4 −6 0
−2 7 2



5.2 Elementary Matrices

Let us make 0 at location (2,1) of A. This is accomplished by multiplying first row with (-2) and
adding to second row. This is mathematically expressed as pre-multiplying A by an elementary
matrix E1. Elementary matrices are unit diagonal matrix with one additional non-zero element.

E1A =

 1 0 0
−2 1 0
0 0 1

 2 1 1
4 −6 0
−2 7 2

 =

 2 1 1
0 −8 −2
−2 7 2

 ;

Note how it is obtained:

[
1 0 0

] 2 1 1
4 −6 0
−2 7 2

 =
[

2 1 1
]

Interpret this as 1 x ( first row of A) + 0 x ( second row of A) + 0 x ( third row of A) = [ 2 1 1] First and
Second row in E A1 is obtained as

[
1 0 0
−2 1 0

] 2 1 1
4 −6 0
−2 7 2

 =

[
2 1 1
0 −8 2

]

In the above equation, second row in RHS is obtained as -2 x ( first row of A) + 1 x ( second row of A) +
0 x ( fthird row of A)= [0 -8 2]. Finally , all the three rows in E A1 is obtained as: 1 0 0

−2 1 0
0 0 1

 2 1 1
4 −6 0
−2 7 2

 =

 2 1 1
0 −8 −2
−2 7 2


The elementary matrix E1 has a speciality.
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(E−1
1 ) =

 1 0 0
2 1 0
0 0 1


Just change the sign of the non-zero off-diagonal element. It does an unwinding (reverse operation)
of E1. It is true for all the elementary matrices that we are about to introduce.

Let us proceed.

We have E1 A =
 2 1 1

0 −8 −2
−2 7 2

.

Let us make 0 at location (3,1) of E1 A. This is obtained by pre-multiplying E 1 A with E2 as follows.

E2E1 A =

 1 0 0
2 1 0
0 0 1

  2 1 1
0 −8 −2
−2 7 2

 =

 2 1 1
0 −8 −2
0 0 1


Let us now make 0 at location (3,2) of E2E1 A .

E3E2E1A =

 1 0 0
0 1 0
0 1 1

  2 1 1
0 −8 −2
0 8 3

 =

 2 1 1
0 −8 −2
0 0 1

 = U

That is E3E2E1A =U

A = ( E3E2E1)−1 U = (E−1
1 E−1

2 E−1
3 )U

A =

 1 0 0
2 1 0
0 0 1

  1 0 0
0 1 0
−1 0 1

  1 0 0
0 1 0
0 −1 1

U

Note that in L, the non-zero off-diagonal elements are negative of the multiplying factors used in
elementary matrices.

How A=LU is used for solving Ax=b . For solving Ax=b , we solve LUx=b as in following example The
x=A\b command in matlab uses LU decomposition for solution.

Ex1. Solve with out multiplying LU. 1 0 0
1 1 0
1 0 1

 2 4 4
0 1 2
0 0 1

 u
v
w

 =

 2
0
2


Solution:

Assume 2 4 4
0 1 2
0 0 1

 u
v
w

 =

 c1

c2

c3

 ;so

 1 0 0
1 1 0
1 0 1

 2 4 4
0 1 2
0 0 1

 u
v
w

 =

 2
0
2

 ⇒
 1 0 0

1 1 0
1 0 1

 c1

c2

c3

 =

 2
0
2



Amrita School of Artifical Intelligence 40



5. Assignment 25
LU Decomposition of Matrices

We solve this

 1 0 0
1 1 0
1 0 1

 c1

c2

c3

=
 2

0
2

 matrix equation using a process called ‘forward

substitution’.

First equation gives c1= 2

Second equation with c1= 2 gives c2= -2

Third equation with c1= 2 gives c3= 0 .

Now we solve the equation 2 4 4
0 1 2
0 0 1

 u
v
w

 =

 c1 = 2
c2 =−2
c3 = 0



That is

 2 4 4
0 1 2
0 0 1

 u
v
w

 =

 2
−2
0


We solve this using a process called ‘backward substitution’. Last equation give w = 0.

Second equation give v =−2 with w = 0.

Third equation give u = 10 with w = 0; v =−2.

So the final solution is

 u
v
w

 =

 10
−2
0



5.3 Tasks

Q1. Express A as LU .

A=


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2



A=[1 -1 0 0; -1 2 -1 0; 0 -1 2 -1; 0 0 -1 2]

A = 4x4
1 -1 0 0

-1 2 -1 0
0 -1 2 -1
0 0 -1 2
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[L,U]=lu(A);
disp("LU decomposition of A is:")

LU decomposition of A is:

disp("L matrix:")

L matrix:

disp(L);

1 0 0 0
-1 1 0 0
0 -1 1 0
0 0 -1 1

disp("U matrix is:")

U matrix is:

disp(U)

1 -1 0 0
0 1 -1 0
0 0 1 -1
0 0 0 1

Q2. Find E 2, E 8 and E−1 of the following elementary matrix without computing.

E=
[

1 0
6 1

]

E=[1 0; 6 1];
E*E

ans = 2x2
1 0

12 1

E^8

ans = 2x2
1 0

48 1
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inv(E)

ans = 2x2
1 0

-6 1

RESULTS

1. LU decomposition is revisited.

2. LU decomposition is used to solve system of equations.
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6 | Assignment 27
Madhava Series Expansion for Two Vari-
ables

In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine,
and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician
and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school
of astronomy and mathematics. Using modern notation, these series are:
Madhava series for sinθ:

sinθ = θ− θ3

3!
+ θ5

5!
− θ7

7!
+·· ·

Or in summation form:

sinθ =
∞∑

n=0
(−1)n θ2n+1

(2n +1)!

Madhava series for cosθ:

cosθ = 1− θ2

2!
+ θ4

4!
− θ6

6!
+·· ·

Or in summation form:

cosθ =
∞∑

n=0
(−1)n θ2n

(2n)!

6.1 Madhava Series Expansion

In recognition of Madhava’s priority, in recent literature these series are sometimes called the Mad-
hava–Newton series,[4] Madhava–Gregory series, or Madhava–Leibniz series (among other combina-
tions).
No surviving works of Madhava contain explicit statements regarding the expressions which are now
referred to as Madhava series. However, in the writing of later Kerala school mathematicians Nilakan-
tha Somayaji (1444 – 1544) and Jyeshthadeva (c. 1500 – c. 1575) one can find unambiguous attri-
butions of these series to Madhava. These later works also include proofs and commentary which
suggest how Madhava may have arrived at the series1.

6.1.1 First degree polynomial approximation of a bi-variate function

Let f (x, y) be a function of two variables. The first-degree Madhava-Taylor series expansion of f (x, y)
around a point (x0, y0) is:

f (x, y) ≈ f (x0, y0)+ ∂ f

∂x
(x0, y0)(x −x0)+ ∂ f

∂y
(x0, y0)(y − y0)

This gives the linear approximation of f (x, y) around the point (x0, y0).

1Wikipidia
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Madhava Series Expansion for Two Variables

1. Determine the linear and quadratic approximation of the function f (x1, x2) = 2x2
1+x2

2+
1

2x2
1 +x2

2
at (2,2) using Madhava series.

SOLUTION

We have to expand the given bi-variate function using the Madhava-Taylor series expansion.
Given that

f (x1, x2) = 2x2
1 +x2

2 +
1

2x2
1 +x2

2

and (a1, a2) = (2,2)

The general form of the Madhava series expansion of a function f (x1, x2) around a point (a1, a2)
is given by:

f (x1, x2) ≈ f (a1, a2)+∇ f (a1, a2) ·
[

x1 −a1

x2 −a2

]
+ 1

2

[
x1 −a1 x2 −a2

]∇2 f (a1, a2)

[
x1 −a1

x2 −a2

]
where ∇ f (a1, a2) is the gradient of f at (a1, a2), and ∇2 f (a1, a2) is the Hessian matrix of second-
order partial derivatives at (a1, a2).

Compute f (2,2) Substitute x1 = 2 and x2 = 2 into the function f (x1, x2):

f (2,2) = 2(2)2 + (2)2 + 1

2(2)2 + (2)2 = 2(4)+4+ 1

8+4
= 8+4+ 1

12
= 12+0.083333 = 12.083333.

Thus,
f (2,2) = 12.083333.

Compute the gradient ∇ f (x1, x2)

The gradient ∇ f (x1, x2) consists of the partial derivatives with respect to x1 and x2.

∇ f (x1, x2) =
[
∂ f
∂x1
∂ f
∂x2

]

Compute ∂ f
∂x1

:
∂ f

∂x1
= 4x1 − 4x1

(2x2
1 +x2

2)2

At x1 = 2 and x2 = 2:

∂ f

∂x1

∣∣∣
(2,2)

= 4(2)− 4(2)

(2(2)2 + (2)2)2 = 8− 8

(8+4)2 = 8− 8

144
= 8−0.055556 = 7.944444.

∂ f
∂x2

:
∂ f

∂x2
= 2x2 − 2x2

(2x2
1 +x2

2)2

At x1 = 2 and x2 = 2:

∂ f

∂x2

∣∣∣
(2,2)

= 2(2)− 2(2)

(2(2)2 + (2)2)2 = 4− 4

(8+4)2 = 4− 4

144
= 4−0.027778 = 3.972222.

Thus, the gradient, ∇ f at (2,2) is:

∇ f (2,2) =
[

7.944444
3.972222

]
.
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Compute the Hessian matrix H(x1, x2) The Hessian matrix contains the second-order partial
derivatives:

∇2(x1, x2) =
 ∂2 f

∂x2
1

∂2 f
∂x1∂x2

∂2 f
∂x2∂x1

∂2 f
∂x2

2


∂2 f
∂x2

1
:

∂2 f

∂x2
1

= 4− 4(6x2
1 −x2

2)

(2x2
1 +x2

2)3

At x1 = 2 and x2 = 2:

∂2 f

∂x2
1

∣∣∣
(2,2)

= 4− 4(6(2)2 − (2)2)

(8+4)3 = 4− 4(24−4)

1728
= 4− 80

1728
= 4−0.046296 = 3.953704.

∂2 f
∂x2

2
:

∂2 f

∂x2
2

= 2− 2(6x2
2 −x2

1)

(2x2
1 +x2

2)3

At x1 = 2 and x2 = 2:

∂2 f

∂x2
2

∣∣∣
(2,2)

= 2− 2(6(2)2 − (2)2)

(8+4)3 = 2− 2(24−4)

1728
= 2− 40

1728
= 2−0.023148 = 1.976852.

Compute ∂2 f
∂x1∂x2

and ∂2 f
∂x2∂x1

:

∂2 f

∂x1∂x2
= ∂2 f

∂x2∂x1
=− 24x1x2

(2x2
1 +x2

2)3

At x1 = 2 and x2 = 2:

∂2 f

∂x1∂x2

∣∣∣
(2,2)

=−24(2)(2)

(8+4)3 =− 96

1728
=−0.055556.

Thus, the Hessian matrix at (2,2) is:

∇2(2,2) =
[

3.953704 −0.055556
−0.055556 1.976852

]
.

Madhava Series Expansion

Substituting the computed values into the power series formula, we get the following expan-
sions:

(a) Linear approximation:

f (x1, x2) ≈ 12.083333+ [
7.944444 3.972222

][
x1 −2
x2 −2

]
(b) Quadratic approximation:

f (x1, x2) ≈ 12.083333+[
7.944444 3.972222

][
x1 −2
x2 −2

]
+1

2

[
x1 −2 x2 −2

][
3.953704 −0.055556
−0.055556 1.976852

][
x1 −2
x2 −2

]
Matlab code for this task is given below.
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1 syms x1 x2
2 f = 2*x1^2 + x2^2 + 1/(2*x1^2 + x2^2);
3 x0 = [2, 2];
4 taylor_expansion = taylor(f, [x1, x2], 'ExpansionPoint ', x0, '

Order', 3);
5 taylor_expansion_simplified = simplify(taylor_expansion);
6 disp('Taylor series expansion up to second degree:');
7 disp(taylor_expansion_simplified);
8 point = [x1, x2];
9 taylor_approx = subs(taylor_expansion_simplified , {x1, x2},

point);
10 disp('Taylor series approximation at a point:');
11 disp(taylor_approx);

Output of this code is shown below.

(437*x1^2)/216 + (x1*x2)/27 - (2*x1)/9 + (433*x2^2)/432 - x2/9 + sym(1/2)

6.1.2 Second degree polynomial approximation of a multi-variate function

2. Expand f (x1, x2, x3) = x2
1 + x2

2 + x2
3 +2x1x2 +6x2x3 +4x1x3 +8x1 +4x2 +6x3 using the Madhava

series about (1,2,3).

SOLUTION

Given function is:

f (x1, x2, x3) = x2
1 +x2

2 +x2
3 +2x1x2 +6x2x3 +4x1x3 +8x1 +4x2 +6x3

We have to generate a second degree polynomial that approximates f (x1, x2, x3) about the point
(1,2,3).

The general form of the Madhava series expansion of a function f (x1, x2, x3) around a point
(a1, a2, a3) up to second order is given by:

f (x1, x2, x3) ≈ f (a1, a2, a3)+∇ f (a1, a2, a3)·
x1 −a1

x2 −a2

x3 −a3

+1

2

[
x1 −a1 x2 −a2 x3 −a3

]
H(a1, a2, a3)

x1 −a1

x2 −a2

x3 −a3


where ∇ f (a1, a2, a3) is the gradient and ∇2 f (a1, a2, a3) is the Hessian matrix of f at (a1, a2, a3).

Compute f (1,2,3)

Substitute x1 = 1, x2 = 2, and x3 = 3 into the function, f (x1, x2, x3):

f (1,2,3) = (1)2 + (2)2 + (3)2 +2(1)(2)+6(2)(3)+4(1)(3)+8(1)+4(2)+6(3)

= 1+4+9+4+36+12+8+8+18 = 100.

Compute the Gradient ∇ f (x1, x2, x3)

The gradient consists of the partial derivatives of f with respect to x1, x2, and x3:

∇ f (x1, x2, x3) =


∂ f
∂x1
∂ f
∂x2
∂ f
∂x3


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Compute ∂ f
∂x1

:
∂ f

∂x1
= 2x1 +2x2 +4x3 +8

At x1 = 1, x2 = 2, and x3 = 3:

∂ f

∂x1

∣∣∣
(1,2,3)

= 2(1)+2(2)+4(3)+8 = 2+4+12+8 = 26.

Compute ∂ f
∂x2

:
∂ f

∂x2
= 2x2 +2x1 +6x3 +4

At x1 = 1, x2 = 2, and x3 = 3:

∂ f

∂x2

∣∣∣
(1,2,3)

= 2(2)+2(1)+6(3)+4 = 4+2+18+4 = 28.

Compute ∂ f
∂x3

:
∂ f

∂x3
= 2x3 +6x2 +4x1 +6

At x1 = 1, x2 = 2, and x3 = 3:

∂ f

∂x3

∣∣∣
(1,2,3)

= 2(3)+6(2)+4(1)+6 = 6+12+4+6 = 28.

Thus, the gradient at (1,2,3) is:

∇ f (1,2,3) =
26

28
28

 .

Compute the Hessian Matrix ∇2 f (x1, x2, x3)

The Hessian matrix contains the second-order partial derivatives:

∇2 f (x1, x2, x3) =


∂2 f
∂x2

1

∂2 f
∂x1∂x2

∂2 f
∂x1∂x3

∂2 f
∂x2∂x1

∂2 f
∂x2

2

∂2 f
∂x2∂x3

∂2 f
∂x3∂x1

∂2 f
∂x3∂x2

∂2 f
∂x2

3



Compute ∂2 f
∂x2

1
:

∂2 f

∂x2
1

= 2.

Compute ∂2 f
∂x2

2
:

∂2 f

∂x2
2

= 2.

Compute ∂2 f
∂x2

3
:

∂2 f

∂x2
3

= 2.
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compute ∂2 f
∂x1∂x2

and ∂2 f
∂x2∂x1

: (Using continuity of f both these values are same)

∂2 f

∂x1∂x2
= 2,

∂2 f

∂x2∂x1
= 2.

compute ∂2 f
∂x2∂x3

and ∂2 f
∂x3∂x2

:

∂2 f

∂x2∂x3
= 6,

∂2 f

∂x3∂x2
= 6.

compute ∂2 f
∂x1∂x3

and ∂2 f
∂x3∂x1

:

∂2 f

∂x1∂x3
= 4,

∂2 f

∂x3∂x1
= 4.

Thus, the Hessian matrix is:

∇2 f (1,2,3) =
2 2 4

2 2 6
4 6 2

 .

Now, we can combine everything to form the second-order Madhava series expansion around
(1,2,3).

The Madhava series expansion is:

f (x1, x2, x3) ≈ 100+[
x1 −1 x2 −2 x3 −3

]26
28
28

+1

2

[
x1 −1 x2 −2 x3 −3

]2 2 4
2 2 6
4 6 2

x1 −1
x2 −2
x3 −3


Matlab code for this task is given below.

12 syms x1 x2 x3
13 f = x1^2 + x2^2 + x3^2 + 2*x1*x2 + 6*x2*x3 + 4*x1*x3 + 8*x1 +

4*x2 + 6*x3;
14 x0 = [1, 2, 3];
15 taylor_expansion = taylor(f, [x1, x2, x3], 'ExpansionPoint ', x0

, 'Order', 3);
16 taylor_expansion_simplified = simplify(taylor_expansion);
17 disp('Taylor series expansion up to second degree:');
18 disp(taylor_expansion_simplified);
19 point = [x1, x2, x3];
20 taylor_approx = subs(taylor_expansion_simplified , {x1, x2, x3},

point);
21 disp('Taylor series approximation at a point:');
22 disp(taylor_approx);

Output of the above code is shown below.

x1^2 + 2*x1*x2 + 4*x1*x3 + 8*x1 + x2^2 + 6*x2*x3 + 4*x2 + x3^2 + 6*x3

RESULTS

1. The famous power series expansion of a multi-variate function f (X ) about X0 is revisited with
the Mathava’s power series expansion method.

2. Both linear and quadratic approximations of given multi-variate functions are generated and
computationally verified in Matlab.
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7.1 Introduction

Classical Rotation matrices Rotation matrices can be created with specific angle of rotation about
co-ordinate axes. Let us start with R2 . The rotation matrix that rotate any vector by an angle theta in
anti-clockwise direction is given by

Rθ =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
To check whether it is doing the intended task, let us multiply it with a unit vector in the x-axis.

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
1
0

]
=

[
cos(θ)
sin(θ)

]
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

][
0
1

]
=

[ −sin(θ)
cos(θ)

]

Let us explore its properties.

7.2 Properties of Orthogonal Matrices

1) It is an orthogonal matrix

Proof:

RT
θ Rθ =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
=

[
1 0
0 1

]

RθRT
θ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
=

[
1 0
0 1

]
2. It preserves the norm of vector on which it operates. It is an obvious property that it should satisfy.

It means if y = Rθx ;then ||y || = ||x||

Proof:

If y = Rθx then
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Figure 7.1: Action of classical Rotation matrices on î in R2

Figure 7.2: Action of classical Rotation matrices on î and ĵ in R2

Amrita School of Artifical Intelligence 52



7. Assignment 28
Orthogonal Matrices and Rotation

yT y = (Rθx)T (Rθx) = xT RT
θ

Rθx = xT
(
RT
θ

Rθ

)
x = xT x

yT y = xT x ⇒||y || = ||x||

3. RT
θ
= R(−θ). That is RT

θ
rotate a vector in clockwise direction.

Further RθR(−θ) = 1 =
[

1 0
0 1

]
Proof

R(−θ) =
[

cos(−θ) −sin(θ)
sin(−θ) cos(−θ)

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
= RT

θ

4. Absolute value (or length) of all Eigen values must be 1.

Proof.

It directly follows from the fact that, it is a norm preserving transformation. It cannot change the
length of the vector it operates on. In this particular case, there is no real input vector for which
output vector is same. So what is the eigenvalue of this matrix. It can’t take any real value. If it has,
It means that there is a vector for which rotation does not happen. That contradicts the idea of
rotation matrix.

Let us find eigenvalue of matrix for θ = π
4

R =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
=

[ 1p
2

−1p
2

1p
2

1p
2

]
.

In matlab eig(R) is obtained as

{
1p
2
+ ip

2
,

1p
2
+ −ip

2

}
The eigenvalues are complex numbers but norm of each eigenvalue is 1.

Orthogonal matrices and properties

Note that pure rotation matrices and orthogonal matrices share many properties. We start with
popular square orthogonal matrices used in signal processing.

1. It preserve the norm of the vector it operates on

That is y = Ax ⇒||y || = ||x||

Proof: yT y = (Ax)T Ax ⇒ xT
(

AT A
)

x = xT x ∴ AT A = 1

2. Magnitude of eigenvalues are unity.

Do the following experiment in matlab.

>> A=dct(eye(4))
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A =


0.5000 0.5000 0.5000 0.5000
0.6533 0.2706 −0.2706 −0.6533
0.5000 −0.5000 −0.5000 0.5000
0.2706 −0.6533 0.6533 −0.2706


>> E= eig(A)

E =


0.9904+0.1379i
0.9904−0.1379i
−0.9904+0.1379i
−0.9904−0.1379i


>> magnitude = E .∗ conj(E)

magnitude =


1.0000
1.0000
1.0000
1.0000


For DCT matrices all eigen values are complex numbers

Let us see eigenvalues of DFT matrix

>>format RAT

>>A=fft(eye(4))

A =


1+0i 1+0i 1+0i 1+0i
1+0i 0−1i −1+0i 0+1i
1+0i −1+0i 1+0i −1+0i
1+0i 0+1i −1+0i 0−1i


>> E=eig(A)

E =


2.0+0.0i
−2.0+0.0i
2.0−0.0i
0.0−2.0i


>> mag=E.*conj(E)

E =


4.0
4.0
4.0
4.0


Note that some eigenvalues are real some are complex. Their magnitude is same but not unity. This
is because, in DFT or FFT , the forward direction uses unnormalized bases. If normalized,
magnitude of each eigenvaluer will be one.

Thus Rotation and orthogonal (square matrices) share some common properties. Since Orthogonal
matrices preserve norm, it can be considered as rotational matrix. So Gilbert Strang interpret U and
V matrices in SVD decomposition as rotation matrices and Σmatrix in A =UΣV T as a scaling matrix.

Amrita School of Artifical Intelligence 54



7. Assignment 28
Orthogonal Matrices and Rotation

7.3 Tasks

Q1. In matlab Create 3×3 pure rotation matrices by providing required angles for rotation around
different axes.

SOLUTION

Matlab code for this task is given below.

1 % Prompt the user for rotation angles in degrees
2 theta_x_deg = input('Enter the rotation angle around the x-axis (in

degrees): ');
3 theta_y_deg = input('Enter the rotation angle around the y-axis (in

degrees): ');
4 theta_z_deg = input('Enter the rotation angle around the z-axis (in

degrees): ');
5
6 % Convert angles from degrees to radians
7 theta_x = deg2rad(theta_x_deg);
8 theta_y = deg2rad(theta_y_deg);
9 theta_z = deg2rad(theta_z_deg);

10
11 % Define the original vector
12 v = [1; 1; 1];
13
14 % Compute rotation matrices
15 R_x = [1, 0, 0;
16 0, cos(theta_x), -sin(theta_x);
17 0, sin(theta_x), cos(theta_x)];
18
19 R_y = [cos(theta_y), 0, sin(theta_y);
20 0, 1, 0;
21 -sin(theta_y), 0, cos(theta_y)];
22
23 R_z = [cos(theta_z), -sin(theta_z), 0;
24 sin(theta_z), cos(theta_z), 0;
25 0, 0, 1];
26
27 % Rotate the vector
28 v_rot_x = R_x * v;
29 v_rot_y = R_y * v;
30 v_rot_z = R_z * v;
31
32 % Plotting
33 figure;
34 hold on;
35 grid on;
36 axis equal;
37 xlabel('X');
38 ylabel('Y');
39 zlabel('Z');
40 title('Vector Rotation Visualization in 3D Space ');
41
42 % Plot the original vector
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43 quiver3(0, 0, 0, v(1), v(2), v(3), 'k', 'LineWidth ', 2, '
DisplayName ', 'Original Vector ');

44
45 % Plot the rotated vectors
46 quiver3(0, 0, 0, v_rot_x (1), v_rot_x (2), v_rot_x (3), 'r', '

LineWidth ', 2, 'DisplayName ', sprintf('Rotated Vector (X-axis ,
%.1f)', theta_x_deg));

47 quiver3(0, 0, 0, v_rot_y (1), v_rot_y (2), v_rot_y (3), 'g', '
LineWidth ', 2, 'DisplayName ', sprintf('Rotated Vector (Y-axis ,
%.1f)', theta_y_deg));

48 quiver3(0, 0, 0, v_rot_z (1), v_rot_z (2), v_rot_z (3), 'b', '
LineWidth ', 2, 'DisplayName ', sprintf('Rotated Vector (Z-axis ,
%.1f)', theta_z_deg));

49
50 % Set view angle for better 3D visualization
51 view (3);
52
53 % Add legend
54 legend('show');

Output of the rotation is shown here.

Rotation of v in x-direction:
1.0000
0.8112
1.1585

Rotation of v in y-direction:
1.2817
1.0000
0.5977

Rotation of v in z-direction:
0.2456
1.3927
1.0000

A 3D visualization of the above code is shown in Figure 7.3.
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Figure 7.3: Vector rotation in 3D space.

Q2. Create wavelet theory based orthogonal matrices and find its eigenvalues.

1 H2 = (1/ sqrt (2)) * [1 1; 1 -1];
2 H4 = (1/2) * [1 1 1 1; 1 -1 1 -1; 1 1 -1 -1; 1 -1 -1 1];
3 H8 = (1/4) * [1 1 1 1 1 1 1 1;
4 1 -1 1 -1 1 -1 1 -1;
5 1 1 -1 -1 1 1 -1 -1;
6 1 -1 -1 1 1 -1 -1 1;
7 1 1 1 1 -1 -1 -1 -1;
8 1 -1 1 -1 -1 1 -1 1;
9 1 1 -1 -1 -1 -1 1 1;

10 1 -1 -1 1 -1 1 1 -1];
11
12 eig_H2 = eig(H2);
13 eig_H4 = eig(H4);
14 eig_H8 = eig(H8);
15
16 disp('Eigenvalues of 2x2 Haar matrix:');

Eigenvalues of 2x2 Haar matrix:

1 disp(eig_H2);
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-1
1

1
2 disp('Eigenvalues of 4x4 Haar matrix:');

Eigenvalues of 4x4 Haar matrix:

1 disp(eig_H4);

-1
-1
1
1

1 disp('Eigenvalues of 8x8 Haar matrix:');

Eigenvalues of 8x8 Haar matrix:

1 disp(eig_H8);

-0.7071
-0.7071
-0.7071
-0.7071
0.7071
0.7071
0.7071
0.7071

Q3. Generate 4×4, 8×8, 16×16 walsh-Hadamard matrices(Normalized) and show that their eigen-
values are either +1 or -1. There may be any other orthogonal matrix that ensures real eigenvalues.
Normalize each matrix with appropriate numbers and then find eigenvalue.

SOLUTION

Matlab code for this task is given below.

1 A = [1 1; 1 -1];
2 H4 = kron(A, A); % 4x4 matrix
3 H8 = kron(H4, A); % 8x8 matrix
4 H16 = kron(H4, H4); % 16x16 matrix
5 normFactor4 = sqrt(size(H4, 1));
6 normFactor8 = sqrt(size(H8, 1));
7 normFactor16 = sqrt(size(H16 , 1));
8 H4 = H4 / normFactor4;
9 H8 = H8 / normFactor8;

10 H16 = H16 / normFactor16;
11
12 eig_H4 = eig(H4);
13 eig_H8 = eig(H8);
14 eig_H16 = eig(H16);
15 disp('Eigenvalues of 4x4 Walsh -Hadamard matrix:');
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Output of the code is shown below.

Eigenvalues of 4x4 Walsh-Hadamard matrix:

1 disp(eig_H4);

-1
-1
1
1

1
2 disp('Eigenvalues of 8x8 Walsh -Hadamard matrix:');

Eigenvalues of 8x8 Walsh-Hadamard matrix:

1 disp(eig_H8);

-1.0000
-1.0000
-1.0000
-1.0000
1.0000
1.0000
1.0000
1.0000

1
2 disp('Eigenvalues of 16x16 Walsh -Hadamard matrix:');

Eigenvalues of 16x16 Walsh-Hadamard matrix:

1 disp(eig_H16);

-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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1 subplot(1, 3, 1);
2 imagesc(H4);
3 title('4x4 Walsh -Hadamard Matrix ');
4 colorbar;
5 subplot(1, 3, 2);
6 imagesc(H8);
7 title('8x8 Walsh -Hadamard Matrix ');
8 colorbar;
9

10 subplot(1, 3, 3);
11 imagesc(H16);
12 title('16x16 Walsh -Hadamard Matrix ');
13 colorbar;

Q4. Generate random 4x4 integer matrix with rank 2 and find full SVD.

Then find eigenvalues of U and V matrices. Demonstrate that absolute value of any eigenvalue is 1.

SOLUTION

Matlab code for this task is given below.

1 A = randi(10, 4, 2) * randi(10, 2, 4);
2 [U, S, V] = svd(A);
3 eig_U = eig(U);
4 eig_V = eig(V);
5 disp('Random 4x4 matrix with rank 2:');

Random 4x4 matrix with rank 2:

1 disp(A);

70 60 120 160
32 29 50 74
26 27 30 62
40 28 88 88

1
2 disp('Eigenvalues of U matrix:');

Eigenvalues of U matrix:

1 disp(eig_U);

1.0000 + 0.0000i
-0.8422 + 0.5392i
-0.8422 - 0.5392i
-1.0000 + 0.0000i
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1
2 disp('Eigenvalues of V matrix:');

Eigenvalues of V matrix:

1 disp(eig_V);

-0.0559 + 0.9984i
-0.0559 - 0.9984i
-0.6060 + 0.7954i
-0.6060 - 0.7954i

1 disp('Absolute values of eigenvalues of U:');

Absolute values of eigenvalues of U:

1 disp(abs(eig_U));

1.0000
1.0000
1.0000
1.0000

1
2 disp('Absolute values of eigenvalues of V:');

Absolute values of eigenvalues of V:

1 disp(abs(eig_V));

1.0000
1.0000
1.0000
1.0000

RESULTS

1. Properties of orthogonal matrices are revisited.

2. Classic orthogonal matrices of practical importance are discussed and computationally exe-
cuted in matlab.
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8.1 Back to the basics

The concepts of eigenvalues, eigenvectors, similarity matrices, and the Cayley-Hamilton theorem
provide powerful tools for matrix analysis, especially in reducing matrices to simpler forms (diagonal
or low-rank approximations). These methods are widely used in applications ranging from solving
differential equations to machine learning, and understanding the spectral decomposition forms the
basis for a deeper exploration into linear algebra and numerical methods.

8.1.1 Characteristic Polynomial

For any square matrix A ∈Rn×n , the characteristic polynomial is given by:

p A(λ) = det(A−λI ),

where λ is a scalar (the eigenvalue) and I is the identity matrix of the same dimension as A.

• The characteristic polynomial is a degree n polynomial in λ.

• The roots of this polynomial are the eigenvalues of A.

Example: For a 2×2 matrix A, the characteristic polynomial is:

p A(λ) = det(A−λI ) = det

(
a11 −λ a12

a21 a22 −λ
)
= (λ1 −λ)(λ2 −λ).

8.1.2 Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem states that every square matrix satisfies its own characteristic poly-
nomial. For a matrix A with characteristic polynomial p A(λ), we have:

p A(A) = 0.

For an n ×n matrix A, let the characteristic polynomial be:

p A(λ) = det(A−λI ) =λn + cn−1λ
n−1 +·· ·+c1λ+ c0.

Then, the Cayley-Hamilton theorem implies:

An + cn−1 An−1 +·· ·+c1 A+ c0I = 0.

This result has several practical implications:

• Power of matrices: Higher powers of A can be expressed as linear combinations of lower pow-
ers.

• Low-rank approximation: Using the Cayley-Hamilton theorem, it’s possible to construct low-
rank approximations or reduce the complexity of matrix calculations.
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8.1.3 Eigenvalues and Eigenvectors

For a square matrix A, an eigenvalue λ and an associated eigenvector v satisfy:

Av =λv.

Here:

• λ is a scalar (eigenvalue).

• v is a non-zero vector (eigenvector).

Properties:

• Eigenvalues may be real or complex, even if A is real.

• Eigenvectors corresponding to distinct eigenvalues are linearly independent.

• If A is symmetric (A = AT ), its eigenvalues are real, and its eigenvectors form an orthonormal
basis for Rn .

8.1.4 Spectral Theorem (for Symmetric Matrices)

If A ∈Rn×n is symmetric (A = AT ), then:
A =QΛQT ,

where:

• Q is an orthogonal matrix whose columns are the eigenvectors of A (i.e., QT Q = I ).

• Λ is a diagonal matrix containing the eigenvalues of A.

This decomposition is called spectral decomposition or eigen decomposition. It allows the matrix A
to be understood in terms of its eigenvalues and eigenvectors.

8.1.5 Eigenvalues and Eigenvectors of Similarity Matrices

Given a matrix A and any invertible matrix P , the matrix B = P−1 AP is called similar to A. Similar
matrices have the following properties:

• Same eigenvalues: Matrices A and B share the same eigenvalues.

If Av =λv, then B w =λw, where w = P−1v.

• The eigenvectors of B are related to the eigenvectors of A via the transformation matrix P :

w = P−1v.

• Similarity preserves the spectrum of the matrix, meaning that diagonalizing A or B gives the
same eigenvalues.

8.1.6 Low-Rank Matrix Approximation

Using eigenvalue decomposition, we can approximate A by truncating small eigenvalues:

A ≈QkΛkQT
k ,

where Qk contains the first k eigenvectors andΛk the first k eigenvalues. This gives a rank-k approx-
imation of A, reducing computational complexity.
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Matrix Powers Using Eigen Decomposition

If A has eigen decomposition A =QΛQ−1, then higher powers of A can be computed as:

Ak =QΛkQ−1,

whereΛk is the diagonal matrix with each diagonal element λk
i (the k-th power of the eigenvalue).

8.1.7 Properties of Eigenvalues and Eigenvectors

1. Sum of eigenvalues: The sum of the eigenvalues of a matrix is equal to the trace of the matrix.

n∑
i=1

λi = Tr(A).

2. Product of eigenvalues: The product of the eigenvalues of a matrix is equal to the determinant
of the matrix.

n∏
i=1

λi = det(A).

3. Orthogonality of eigenvectors: If A is symmetric, its eigenvectors corresponding to distinct
eigenvalues are orthogonal.

4. Eigenvalues of powers of matrices: If λ is an eigenvalue of A, then λk is an eigenvalue of Ak .

5. Real eigenvalues: If A is symmetric, all eigenvalues are real.

6. Complex eigenvalues: For general (non-symmetric) matrices, eigenvalues can be complex.

7. Zero eigenvalue: A zero eigenvalue indicates that A is singular, meaning det(A) = 0.

8. Eigenvector normalization: Eigenvectors can be normalized, so ∥vi∥ = 1.

8.2 Taks

1. create two 4×4 matrices A and B with rank 3 such that rank of AB is 2.

SOLUTION

Here the key idea is the consequence of cayley Hamilton theorem. If λ1 and λ2 are eigen values
of A, then M1 = A−λ1I and M2 = A−λ2I have same shape of A but one less in rank. Also, M1M2

will have rank 2 less than that of A.

To get the desired matrices, M1 and M2, let’s start with a non singular matrix B and create a new
base matrix with specified eigen values 1, 2, 3, and 4 (say). Now create a matrix A = B−1∗D ∗B .
Here A is called a similarity matrix and has same eigen values as D .

Create the base matrix, B =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Clearly, |B | = 16 ̸= 0, so it is nonsingular. Now create a matrix, P such that P has the eigenvalues
1,2,3,4. This can be achieved by constructing P as a similar matrix to a diagonal matrix D , with
diagonal entries 1 , 2 3 and 4.
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P = B−1DB

=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




0.2500 0.2500 0.2500 0.2500
0.2500 −0.2500 0.2500 −0.2500
0.2500 0.2500 −0.2500 −0.2500
0.2500 −0.2500 −0.2500 0.2500



=


5/2 −1/2 −1 0
−1/2 5/2 0 −1
−1 0 5/2 −1/2
0 −1 −1/2 5/2



Now construct two matrices: M1 = P − I , M2 = p − 2I , and M3 = M1M2. These matrices are
respectively,

M1 =


3/2 −1/2 −1 0
−1/2 3/2 0 −1
−1 0 3/2 −1/2
0 −1 −1/2 3/2



M2 =


1/2 −1/2 −1 0
−1/2 1/2 0 −1
−1 0 1/2 −1/2
0 −1 −1/2 1/2



M1M2 =


3/2 −1/2 −1 0
−1/2 3/2 0 −1
−1 0 3/2 −1/2
0 −1 −1/2 3/2




1/2 −1/2 −1 0
−1/2 1/2 0 −1
−1 0 1/2 −1/2
0 −1 −1/2 1/2



=


2 −1 −2 1
−1 2 1 −2
−2 1 2 −1
1 −2 −1 2


Now to find the rank of M1, M2, and M1M2, reduce then into row reduced Echelon form as
follows.

r r e f (M1) =


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0



r r e f (M2) =


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0



r r e f (M3) =


1 0 −1 0
0 1 0 −1
0 0 0 0
0 0 0 0


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Counting number of non-zero rows of these row reduces Echelon forms; it is clear that

ρ(M1) = 3

ρ(M2) = 3

ρ(M3) = 2

as desired. Note that all these matrices, M1, M2, and M3, are 4×4 matrices.

Matlab code for this task is given below.

1 Base =[1 1;1 -1];
2 Base=kron(Base ,Base);
3 P=inv(Base)*diag ([1,2,3,4])*Base;
4 M_1=P-eye(4);
5 M_2=P-2*eye(4);
6 M_3=M_1*M_2
7 tol =0.001;
8 I=eye(4);
9 r=rank(M_1 ,tol);

10 r1=rank(M_2 ,tol);
11 r2=rank(M_3 ,tol);
12 disp("Rank of M_1:")
13 disp(r);
14 disp("rank of M_2:")
15 disp(r1)
16 disp("Rank of M_3:")
17 disp(r2)

Output of the code is given below.

Rank of M_1:
3

rank of M_2:
3

Rank of M_3:
2

2. Create three 4×4 matrices A , B , and C with rank 3 such that rank of ABC is 1.

SOLUTION

As continuation of the previous taks, just create a new matrix C = P − 3I , and A = P − I and
B = P −2I .

For completion, let’s write C .
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C = P −3I

=


−1

2 −1
2 −1 0

−1
2 −1

2 0 −1
−1 0 −1

2 −1
2

0 −1 −1
2 −1

2



ABC =


3
2 −3

2 −3
2

3
2

−3
2

3
2

3
2 −3

2
−3

2
3
2

3
2 −3

2
3
2 −3

2 −3
2

3
2



r r e f (ABC ) =


1 −1 −1 1
0 0 0 0
0 0 0 0
0 0 0 0


So rank of ABC is 1. Matlab code for this task is given below.

1 A=P-eye(4);
2 B=P-2*eye(4);
3 C=P-3*eye(4)
4 ABC=A*B*C
5 tol =0.001;
6 I=eye(4);
7 r=rank(A,tol);
8 r1=rank(B,tol);
9 r2=rank(C,tol);

10 r3=rank(ABC ,tol);
11 disp("rank of ABC is:");
12 disp(r3);

Output of the code is shown below.

rank of ABC is:
1

3. Create four 4x4 matrices A , B C, and D with rank 3 such that the rank of ABCD is 0

SOLUTION

This problem can be solved as in the previous task. Create one more matrix, D = P −4I , then
M4 = ABC D is a 4×4 matrix (a zero matrix), but its rank is 0. Matlab code demonstrating this
result computationally is given below.

1 M_4=(P-eye(4))*(P-2*eye(4))*(P-3*eye(4))*(P-4*eye(4));
2 disp("rank of M_4 is:")
3 disp(rank(M_4 ,tol))

Output of the above code is shown below.

rank of M_4 is:
0

4. Consider the 4×4 matrix A created in the previous task, what are the eigenvalues of a) B = A+2I ,
b) C = A−3I .
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SOLUTION

To find eigen valuues of A +2I and A −3I , we will use the properties of eigen values. If λ is an
eigen value of A, then λ+a and λ−a will be the eigen values of A+aλ and A−λI respectively.
So with out actual calculation of eigen values of A+2I and A−3I we can write them using this
property. Since 1,2,3 and 4 are the eigen values of A,

EVs(A+2I ) = {1+2,2+2,3+2,4+2}

= {3,4,5,6}

Evs(A−3I ) = {1−3,2−3,3−3,4−3}

= {−2,−1,0,1}

Matlab code to verify the result is shown below.

1 B1=Am+2*eye(4)
2 B2=Am -3*eye(4)
3 disp("Eigen Values of B=A+2I is:")
4 disp(eig(B1));
5 disp("Eigen Values of C=A-3I is")
6 disp(eig(B2));

output of the code is shown below.

Eigen Values of B=A+2I is:
3
4
5
6

Eigen Values of C=A-3I is
-2
-1
-1/3611724390554282
1

5. Create a 3×3 matrix with eigenvalues 0,1,2 using Matlab.

SOLUTION

Using the magic matrix in matlab, a similar matrix with given eigen values 0,1,2 is created and
verified. The code for this task is given below.

1 format default
2 P=magic (3);
3 D=diag ([0 1 2]);
4 M=inv(P)*D*P;
5 disp("The similarity matrix with eigen values as that of D

created is:");
6 disp(M)
7 disp(" Verification of eigen values :")
8 disp("Eigen values of M is:")
9 disp(eig(M))

Output of the code is shown below.
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The similarity matrix with eigen values as that of D created is:
0.0778 0.4278 -0.7556
0.9111 2.0111 0.5778

-0.2556 -0.9056 0.9111
Verification of eigen values:
Eigen values of M is:

-0.0000
2.0000
1.0000

RESULTS

Matrices with given properties related to rank and eigenvalues are created, and results are ver-
ified computationally using matlab.
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9.1 Introduction

This lesson focused on revisiting the topics eigen values, eigen vectors, its properties and relationship
with null space.

1. Find eigenvalues and vectors of 2x2 matrix with rank 2.
Example

A =
[

1 2
3 2

]
. Note that rank is 2

λ1 +λ2 = Tr(A) = 3 (1)

λ1λ2 = det(A) =−4
(λ1 −λ2)2 = (λ1 +λ2)2 −4λ1λ2 = 9+16 = 25

λ1 −λ2 = 5 (2)

(1) and (2) ⇒ λ1 = 4,λ2 =−1

In case of 2x2 , you need to use only first row of A matrix for finding eigen vectors.

[
1−λ 2

3 2−λ
][

x
y

]
=

[
0
0

]
⇒

[
x
y

]
⊥

[
1−λ

2

]

∴
[

x
y

]
=

[ −2
1−λ

]
Can u figure out Why?

EV(λ1 = 4) =
[ −2

1−λ
]
=

[ −2
1−4

]
=

[ −2
−3

]
∼=

[
2
3

]

EV(λ2 =−1) =
[ −2

1−λ
]
=

[ −2
1+!

]
=

[ −2
3

]
You can verify the result

1. Find basis set for all the vector spaces associated with 2x2 matrix with rank 2.

Here you can write the result blindly. Any two independent vectors in R2 will suffice for rows pace
and column space.
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All the basis set vectors must be written as a set of column vectors. That is the standard.

C (A) =
{[

1
0

]
,

[
0
1

]}

R (A) =
{[

1
0

]
,

[
0
1

]}
RN(A) = null
LN(A) = null

2. Find basis set for all the vector spaces associated with 2x2 matrix with rank 1. Also find
eigenvalues and eigen vectors.

A =
[

1 2
3 6

]
Answers.

All the basis set vectors must be written as a set of column vectors. That is the standard.

Row space is spanned by

{[
1
2

]}

Right Null space is spanned by

{[ −2
1

]}

column space is spanned by

{[
1
3

]}

Left Null space is spanned by

{[ −3
1

]}
Eigen values

Since rank deficiency is 1, one eigen value is zero . Corresponding eigen vector is Right null space
vector. The other eigenvalue is 6+1= 7,

Corresponding eigen vector is

[ −2
1−7

]
∼=

[
2
3

]
Dealing with 3x3 matrices

As per Gilbert Strang, asking eigenvalue and eigen vector computation of general n ×n matrix , n ≥ 3
in examination is a crime (unless it is a special matrix). But unfortunately in India our teachers test
only numerical (or clerical) ability of Engineering students rather than the conceptual and
visualization capability of students. (Conceptual do not mean asking straight forward definitions,
advantages and disadvantages etc).

Here we give below how to deal with eigen value computation of 3x3 matrices for a quick answer. We
also deal with special cases.
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9.1.1 Writing Characteristic equation of a matrix

3. Characteristic polynomial of 3x3 matrix can be computed very fast except the last term which is
determinant .

Let A =
 a b c

d e f
g h i



|A−λI | =
∣∣∣∣∣∣
 a −λ b c

d e −λ f
g h i −λ

∣∣∣∣∣∣
= (−1)3λ3 + (−1)2λ2 (a +e + i )+ (−1)λ

(
(ae+ei+ai)− (

bd+cg+ fh
))+det(A)

= (−1)3λ3 + (−1)2λ2Tr(A)+ (−1)λ
(
(ae+ei+ai)− (

bd+cg+ fh
))+det(A)

Find characteristic equation of the following matrix

A =
 1 2 2

3 3 7
4 3 −1


It is a special matrix. Column sum is same.

Characteristic equation is given by

0 = (−1)3λ3 + (−1)2λ2Tr(A)+ (−1)λ
(
(ae+ei+ai)− (

bd+cg+ fh
))+det(A)

=−λ3 +3λ2 + (−1)λ ((−1)− (35))+32

=−λ3 +3λ2 +36λ+32

Or λ3 −3λ2 −36λ−32 = 0

Note that all column sum is 8. So, one eigen value is 8.

(if all column sum or all row sum is same , that value (the sum) is an eigen value.)

λ1 = 8

Immediately we infer that

8+λ2 +λ3 = Tr(A) = (1+3+−1) = 3
8λ2λ3 = det(A) = 32
⇒λ2 =−4;λ3 =−1;

But there is no short cut for eigen-vector computation. Another 3x3 special matrix that can be easily
handled are block diagonal matrices of the form

A =
 a b 0

c d 0
0 0 i

 or B =
 a 0 0

0 e f
0 h i


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Eigen values of A are eigen values of two blocks namely and eig

[
a b
c d

]

Eigen values of B are eigen values of two blocks namely and eig

[
e f
h i

]
Another special matrix.

Lower and upper triangular matrices

Here Eigen values are same as diagonal elements.

9.1.2 Creating integer matrices with integer inverse matrix

Creating integer matrices with integer inverse matrix

A =
 3C0

4C0
5C0

3C1
4C1

5C1
3C2

4C2
5C2

=
 1 1 1

3 4 5
3 6 10



B =


4C0

5C0
6C0

7C0
4C1

5C1
6C1

7C1
4C2

5C2
6C2

7C2
4C3

5C3
6C3

7C3

=


1 1 1 1
4 5 6 7
6 10 15 21
4 10 20 35



Assignment

1. Find the eigen values and eigen vectors of the matrix

A =
[

1 −1
2 4

]
1 A = [1 -1; 2 4];
2 [eigVec , eigVal] = eig(A);
3 disp('Eigenvalues:');

Eigenvalues:

1 disp(diag(eigVal));

2
3

1 disp('Eigenvectors:');

Eigenvectors:

1 disp(eigVec);

-0.7071 0.4472
0.7071 -0.8944

Amrita School of Artifical Intelligence 74



9. Assignment 30
Eigen Values and Eigen Vectors

9.1.3 Eigen values of diagonal matrices

2. Find the eigen values of A, B and C:

A =
 1 2 3

0 4 5
0 0 6

 , B =
 0 0 1

0 2 0
3 0 0

 and C =
 2 2 2

2 2 2
2 2 2


SOLUTION

1. Given matrix A is

A =
1 2 3

0 4 5
0 0 6


Eigenvalues:

The eigenvalues of the matrix A are the diagonal elements of this upper triangular matrix:

λ1 = 1, λ2 = 4, λ3 = 6

Eigenvectors:

To find the eigenvectors, we solve (A−λI )x = 0 for each eigenvalue λ.

For λ1 = 1:

A− I =
0 2 3

0 3 5
0 0 5


Solving (A− I )x = 0 yields the eigenvector:

v1 =
1

0
0


For λ2 = 4:

A−4I =
−3 2 3

0 0 5
0 0 2


Solving (A−4I )x = 0 yields the eigenvector:

v2 =
2

3
0


For λ3 = 6:

A−6I =
−5 2 3

0 −2 5
0 0 0


Solving (A−6I )x = 0 yields the eigenvector:

v3 =
16

25
10


matlab code for this task is given below.
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1 % question 1
2 A = [1 2 3; 0 4 5; 0 0 6];
3 [eigVec , eigVal] = eig(A);
4 disp('Eigenvalues:');

Output of the code is shown below.

Eigenvalues:

1 disp(diag(eigVal));

1
4
6

1 disp('Eigenvectors:');

Eigenvectors:

1 disp(eigVec);

1.0000 0.5547 0.5108
0 0.8321 0.7982
0 0 0.3193

2. Here the matrix B is given by

B =
0 0 1

0 2 0
3 0 0


Eigenvalues:

To find the eigenvalues, solve the characteristic polynomial:

det(B −λI ) = (λ−2)(λ−p
3)(λ+p

3) = 0

The eigenvalues of matrix B are:

λ1 = 2, λ2 =
p

3, λ3 =−p3

Eigenvectors:

To find the eigenvectors, solve (B −λI )x = 0 for each eigenvalue λ.

For λ1 = 2:

B −2I =
−2 0 1

0 0 0
3 0 −2


Solving (B −2I )x = 0 yields the eigenvector:

v1 =
0

1
0


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For λ2 =
p

3:

B −p
3I =

−
p

3 0 1
0 2−p

3 0
3 0 −p3


Solving (B −p

3I )x = 0 yields the eigenvector:

v2 =
a

b
c


For λ3 =−p3:

B − (−p3)I =


p

3 0 1
0 2+p

3 0
3 0

p
3


Solving (B − (−p3)I )x = 0 yields the eigenvector:

v3 =
d

e
f


values of a, b , c, d , e and f can be found using matlab. Matlab code and output for this task is
given below.

1
2 % question 2
3 B = [0 0 1; 0 2 0; 3 0 0];
4 [eigVec , eigVal] = eig(B);
5
6 disp('Eigenvalues:');

Eigenvalues:

1 disp(diag(eigVal));

1.7321
-1.7321
2.0000

1
2 disp('Eigenvectors:');

Eigenvectors:

1 disp(eigVec);

0.5000 -0.5000 0
0 0 1.0000

0.8660 0.8660 0
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3. Matrix C is given as a row redundant matrix,

C =
2 2 2

2 2 2
2 2 2


Eigenvalues:

det(C −λI ) =
∣∣∣∣∣∣
2−λ 2 2

2 2−λ 2
2 2 2−λ

∣∣∣∣∣∣= 0

The eigenvalues are:
λ1 = 6, λ2 = 0, λ3 = 0

Eigenvectors:

For λ1 = 6:

C −6I =
−4 2 2

2 −4 2
2 2 −4


The eigenvector corresponding to λ1 = 6 is:

v1 =
1

1
1


For λ2 = 0 and λ3 = 0:

C −0I =C

The eigenvectors corresponding to λ2 = 0 and λ3 = 0 are orthogonal to v1 , are in the null space
of C and are the solutions of x + y + z = 0 given by

v1 =
−1

1
0


v2 =

−1
0
1


Matlab code and its output are shown below.

1 % question 3
2 C = [2 2 2; 2 2 2; 2 2 2];
3 [eigVec , eigVal] = eig(C);
4 disp('Eigenvalues:');

Eigenvalues:

1 disp(diag(eigVal));

-0.0000
-0.0000
6.0000
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1
2 disp('Eigenvectors:');

Eigenvectors:

1 disp(eigVec);

-0.3094 -0.7556 0.5774
-0.4996 0.6458 0.5774
0.8091 0.1098 0.5774

9.1.4 Eigen values of block matrix

3) If B has eigenvalues 1 ,2 ,3, C has eigenvalues 4, 5, and 6, and D has eigenvalues 7,8,9, what are the

eigenvalues of 6 by 6 matrix A =
[

B C
0 D

]
?

SOLUTION

Given the block matrix:

A =
[

B C
0 D

]
Choose B , C and D to produce the eigen values:

B =
1 0 0

0 2 0
0 0 3

 , C =
4 0 0

0 5 0
0 0 6

 , D =
7 0 0

0 8 0
0 0 9


Eigenvalues of Matrix A:
The eigenvalues of a block matrix of the form:

A =
[

B C
0 D

]
are the union of the eigenvalues of the diagonal blocks B and D . This is because A is an upper block
triangular matrix, and for such matrices, the eigenvalues are those of the diagonal blocks.
Thus, the eigenvalues of matrix A are the eigenvalues of B and D .
The eigenvalues of matrix B are:

λB = {1,2,3}

The eigenvalues of matrix D are:
λD = {7,8,9}

Combining these, the eigenvalues of matrix A are:

λA = {1,2,3,7,8,9}

Matlab code to verify above claim is given below.

1 % Define matrices B, C, and D with the given eigenvalues
2 B = [1 0 0; 0 2 0; 0 0 3];
3 C = [0 0 0; 0 0 0; 0 0 0];
4 D = [7 0 0; 0 8 0; 0 0 9];
5
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6 A = [B, C;
7 zeros(size(D)), D];
8 eigenvalues_A = eig(A);
9 disp('Eigenvalues of A:');

Eigenvalues of A:

1 disp(eigenvalues_A);

1
2
3
7
8
9

1 eigenvalues_B = eig(B);
2 eigenvalues_D = eig(D);
3 disp('Eigenvalues of B:');

Eigenvalues of B:

1 disp(eigenvalues_B);

1
2
3

1 disp('Eigenvalues of D:');

Eigenvalues of D:

1 disp(eigenvalues_D);

7
8
9

1 combined_eigenvalues = sort([ eigenvalues_B; eigenvalues_D ]);
2 disp('Combined eigenvalues of B and D:');

Combined eigenvalues of B and D:

1 disp(combined_eigenvalues);
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1
2
3
7
8
9

RESULTS

1. Eigen values and eigen vectors of the given problems are found.

2. Properties of eigen values of block matrix are verified mathematically and computationally.
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