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1 Assignment 33
Eigen values of Anti-diagonal Matri-
ces

1.1 Definition and Properties

Do thought/computational experiments and find patterns. The generic inference obtained from
such experiments reduces time required for answering questions in examinations.

It is demonstrated through finding Eigenvalues and eigenvectors of anti-diagonal matrices.

1.1.1 Definition

Let A be a square matrix . An entry in A is an anti-diagonal entry if it is on the line going from the
lower left corner of A to the upper right corner. If all entries in A are zero except on the anti-diagonal,
then A is an anti-diagonal matrix.

QU O © o
SO o O O
S O T O
S O O Q

1.1.2 Properties

Properties of anti-diagonal matrices
If A and D are nxn anti-diagonal and diagonal matrices respectively, then AD, DA are anti-diagonal.
The product of two anti-diagonal matrices is a diagonal matrix.

For example

000 all0 00 a ad 0 0 0
o0bo|loon o 0 bc 0 0
A¥AL g 0 0llo ¢ o0 o 0 0 bc 0
d 0o0o0l||ldooo 0 0 0 ad

1.1.3 Examples

Example 1. Creating 3 x 3 anti-diagonal matrix and finding eigen values and vectors.

>> A=fliplr(diag([1 2 3])) % or fliplr(diag(1:3))




1. Assignment 33
Eigen values of Anti-diagonal Matrices

A=

w o o
(=2 \C e}
o O =

|

Through computational experiments by hand or using matlab we can find that, if matrix size is odd,
then the central number is an eigenvalue. So here 2 is an

0
eigenvalue. Corresponding eigen vector is [ 1 ] (or its scalar multiple)
0

Multiply (pairwise) the numbers around middle number and find square roots. Here multiplications
(1 and 3) give 3 and its roots are. These are the remaining eigenvalues.

Corresponding eigen vectors can be computed as follows
0-v3 0 1 X 0
EV(V/3)is the solution of 0 2-v3 0 yl=|0
3 0 0-v3 ||z 0

Note,first and third row are dependent,So consider rows 1 and 2

x 0-v3 x [0 x 1
y |L 0 salso| y [L| 2-v3 |=] y =] ©
z 1 z | 0 z V3
0-v3 ]
Note. It is created from 0 . Interchange non-zero elements and change sign of one of the
1

elements interchanged. (Vertically; flip and change one sign)

Also
0+v3 0 1 x 0
EV(v3)is the solutionof| 0  2+v3 0 yl=]0
3 0 0++v3 z 0

Note,first and third row are dependent.So consider row 1 and 2

X 0+\/§ X 0 X -1
v |L 0 salso | y [Ll o+v3 |=| ¥y |=| O
z 1 z 0 z V3

So,the set of Eigenvectors corresponding to eigen value 2,v/3,-v/3are

HIB[E]

Example 2. 5 x 5 anti-diagonal matrix and its eigen values

0 00 01
0 00 20
A=1 0 0 3 0 O
04000
5 0 0 0O

Amrita School of Artificial Intelligence 10



1. Assignment 33
Eigen values of Anti-diagonal Matrices

Eigen values are 3,v/4 * 2,-vV/4 % 2,v/5x 1,/5x 1

Eigen vectors are

0 0 0 1 -1
0 2 ) 0 0
1],] o 0 0 0
0 V8 V8 0 0
0 0 0 V5 V5

Do you see anywhere a staircase pattern?

We can make one more change in the first eigenvector value so that you can create this matrix just by
looking at values in upper part of A and eigen values. Take eigen vector set as :

0 0 0 1 -1
0 2 -2 0 0
31,1 o 0 0 0
0 V8 V8 0 0
0 0 0 V5 V5

Example 3. 4 x 4 anti-diagonal matrix and its eigen values.

~ O © O
O W o o
S O N O
S O O

Eigenvalues arev/2 * 3,-v/2 * 3,V/1 * 4,—V/1 * 4=1/6,-16,2,-2

0 0 1 -1
2 -2 0 0
\/6 ’ \/6 ’ O ’ 0
0 0 2 2
1.2 Tasks
Assignment

1. Write one significant fact about the eigen values of each of the following.

(a) Areal symmetric matrix

(b) A stable matrix ; all solutions to du/dt = Au approach zero.
(c) An orthogonal matrix

(d) A Markov matrix (stochastic matrix)

(e) A defective matrix (nonzero eigenvalue repetition)

Amrita School of Artificial Intelligence 11



1. Assignment 33
Eigen values of Anti-diagonal Matrices

(f) A singular matrix

SOLUTION

(a) Real Symmetric Matrix:

¢ All eigenvalues of a real symmetric matrix are real.

oE

The eigenvalues are 3 and 1, both real.

e Example: Consider the matrix

(b) Stable Matrix (solutions to % = Au approach zero):

* A matrix is stable if and only if all of its eigenvalues have negative real parts.
¢ Example: Consider the matrix
-1 0
(o )

The eigenvalues are —1 and —2, both negative, indicating stability.
(c) Orthogonal Matrix:

* The eigenvalues of an orthogonal matrix lie on the unit circle, meaning they have an
absolute value (magnitude) of 1.
0 -1
=i o)

e Example: Consider the matrix
The eigenvalues are i and —i, which lie on the unit circle in the complex plane.
(d) Markov Matrix (Stochastic Matrix):

e A Markov matrix has at least one eigenvalue equal to 1, as the rows sum to 1 and
represent probability distributions.

07 0.3
P _(0.4 0.6)

e Example: Consider the matrix

The eigenvalues are 1 and 0.3, where 1 corresponds to the steady-state probability
vector.

(e) Defective Matrix (nonzero eigenvalue repetition):

* A defective matrix has fewer linearly independent eigenvectors than its repeated
eigenvalues, meaning it cannot be fully diagonalized.

4 1
2=(o 4
The eigenvalue 4 is repeated, but there is only one linearly independent eigenvector,
making the matrix defective.

¢ Example: Consider the matrix

(f) Singular Matrix:

* Asingular matrix has atleast one eigenvalue equal to 0, which is why it is non-invertible.
¢ Example: Consider the matrix
1 2
2=l

The eigenvalues are 0 and 5, indicating that the matrix is singular.

2. Compute Eigenvalues of

Amrita School of Artificial Intelligence 12



1. Assignment 33
Eigen values of Anti-diagonal Matrices

010 0 10
pl=] 0 0 1 [andp2=| 0 0 1
1 00 1 00

SOLUTION

Matlab code and output for this task are given below.

4 eigen values of pl

plt = [01 0; 00 1; 1 0 0];

eigenvalues = eig(pl);

disp('The eigenvalues of matrix pl are:');

The eigenvalues of matrix pl are:

disp(eigenvalues);

-0.5000 + 0.8660i
-0.5000 - 0.86601
1.0000 + 0.0000i

/4 eigen wvalues of p2

p2 = [0 1 0; 0 0 1; 1 0 0];

eigenvalues = eig(p2);

disp('The eigenvalues of matrix p2 are:');

The eigenvalues of matrix p2 are:

disp(eigenvalues) ;

-0.5000 + 0.8660i
-0.5000 - 0.86601
1.0000 + 0.0000i

3. Find the eigenvalues and eigen vectors of

and B =

S

I
oo w
ISTESTIIN
o N W
N oo
o N o
oo

SOLUTION

Matlab code and output for this task are given below.

4 eigen wvalues of 4

A =1[342; 012; 00 0];

eigenvalues = eig(4);

disp('The eigenvalues of matrix A are:');

The eigenvalues of matrix A are:

Amrita School of Artificial Intelligence
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1. Assignment 33
Eigen values of Anti-diagonal Matrices

disp(eigenvalues);

S = W

4 eigen values of B
B=[002; 020; 20 0];

eigenvalues = eig(B);

disp('The eigenvalues of matrix B are:');

The eigenvalues of matrix B are:

disp(eigenvalues);

RESULTS

1. Definition and basic properties of anti-diagonal matrices are reviewed.

2. Eigen values and eigen vectors of given anti-diagonal matrices are computationally found.

Amrita School of Artificial Intelligence
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2 Assignment 34
Connecting Geometry with Linear Al-
gebra

2.1 Geometry to Algebra
Some ‘plane’ thoughts about plane passing through origin in 3Dimension
Summary

Many geometrical problems can be solved quickly if we express and visualize the problem in linear
algebra perspective. This writeup and assignment enable us solve plane related problems in 3D
space. We connect equation of a plane to null space of a matrix and its normal vector. Required
quantities can be obtained in split second if we practice.

Equation of a 3D plane though origin is given by
From linear algebra point of view, it is a set of points (x, y, z) satisfying

X
y
z
matrix A. Here, A is a row vector. Any row vector is orthogonal to all vectors in (right) null space.

(a,b,c) =0.Itis of the form Ax=0;x = (x, N2 z) T. It is set of points that defines the null space of

Hence Vector is a normal to the plane given by ax+by+c=0

a
b
c

2.1.1 Connection with points on the plane to null space

Dimension of (right) null space of our A is 2. So, it is spanned by 2 independent vectors. These 2
vectors are orthogonal to row vector in A.

How to get these basis vectors for null space.

Gauss procedure for solving Ax=0 come to our rescue.

Here is it. We should be able to do in a split second in examination hall.
Let us take an example. Let 2x + 3y + 4z = 0 be the plane.

As per ‘Gauss Terminology’ x is our pivot variable and others are free variables.




2. Assignment 34
Connecting Geometry with Linear Algebra

We express all variables in terms of free variables and immediately get basis set for null space . It is as
follows

X = —%y+-22

X —% -2
y=1ly+0z=> | y |[=y 1 +z]| O
z 0 1
z=0y+ 1z
_% -2
The set of vectors 1 |,] 0 span right null space .
0 1

Any point (x,),2) in the plane is a linear combination of these two vectors.
To check, add these two vectors to get (x,),z) and substitute in 2x + 3y + 4z.

The result will be zero.

3 7
X -3 -2 -3
y|= 1 + 0 = 1 ; and
z 0 1 1

2x(=7/2)+3x (1) +4 (1) =0
L £

This process and the concept of Gram-Schmidt orthogonalization process allows you to tackle
many geometric problems. Some time you may require the help of projection matrices.

Assignment Questions

1.1 Find a basis for the subspace S in R* spanned by all solution of

x1+x2+x3-x4=0

SOLUTION

Amrita School of Artificial Intelligence 16



2. Assignment 34
Connecting Geometry with Linear Algebra

Basis for the Subspace S c R*
Consider the linear equation:

X1+ X2+ x3—x4=0.
This can be expressed in matrix form as:

X1

X3
X4

The corresponding augmented matrix is:

(111 -1]0).

Using Gaussian elimination, we find that the matrix is already in row echelon form. We solve for x;:

X1 = —X2 — X3 + X4.

Thus, the general solution can be expressed as:

X -1 -1 1
X2 1 0 0
X3 = X2 0 + X3 1 + X4 ol
X4 0 0 1

Therefore, a basis for the subspace S is given by the set:

-1\ (-1} [1
1 0 0
ol'l1/[]o0
0 0 1

These vectors are linearly independent and span the solution space of the equation. Matlab code and
output for this task is given below.

A =TI1 11 -17;
null_space = null(A, 'r');
disp('The basis for the subspace S is:');

The basis for the subspace S is:

disp(null_space);

O = O =
_ O O

O O = =

1.2 Find a basis for the orthogonal complement S* .

SOLUTION

Amrita School of Artificial Intelligence
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2. Assignment 34
Connecting Geometry with Linear Algebra

Finding the Basis for the Orthogonal Complement S+

Given the linear equation that defines the subspace S:

X1+ X2+x3—x4=0,

we identify the normal vector n associated with this equation:

1
e 1
11

-1
The orthogonal complement S* consists of all vectors v € R* such that:

n-v=0.

This gives the condition:

1-x1+1-x041-x3—-1-x4=0,

which simplifies to:

X1+ X2+ x3— x4 =0.

Rearranging this, we find:

X4 = X1+ X2 + X3.

We can express the general solution as:

X1 X1 1 0 0
2 = 2 = X1 0 + Xo L + X3 0 .
X3 X3 0 0 1
X4 X1 +X2+ X3 1 1 1

Thus, the orthogonal complement S* is spanned by the normal vector:

1
1
st= span 1

-1
The basis for the orthogonal complement S* is:
1
1
1
-1

Matlab code and output for this task are given below.

/ Use the null space function to find the basis for the orthogonal
complement
n=A"; J Normal wector as a column wector

4 Display the normal wvector
disp('Normal vector:');

Amrita School of Artificial Intelligence 18



2. Assignment 34
Connecting Geometry with Linear Algebra

Normal wvector:

disp(n);

e

2. Find an orthonormal basis for R3 starting from the vector (11 -1)

Hint: Get basis set for null space for A=[1 1 -1]. Apply orthogonalization process intelligently.

SOLUTION
2
Given the matrix A= (1 1 -1)and the vectorb = |1 |, we are asked to project b onto the null space
0
of A.
X1
The null space of A, A (A), consists of all vectors x = | x | such that:
X3

X1+ x2—x3=0.

This implies that x; = —x» + x3. Therefore, a basis for the null space is given by:

-1 1
N (A) =span ( 1 J,(O)
0 1

-1 1

Let B= ( 1 O) be the matrix whose columns are the basis vectors for A (A).
0 1

The projection of b onto the null space is given by:

Proj_y (4 (b) = B(BTB)'BD.

First, compute B” B:
2 -1
BB = ( ) .

The inverse of B B is:

Now, compute B”b:

Thus,

Amrita School of Artificial Intelligence
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2. Assignment 34
Connecting Geometry with Linear Algebra

Tl pTy. _ L(2 1)(=1) _(0
(B"B) Bb_3(1 2)(2)_(1).

Finally, the projection is:

0 1
Proj_y (4 (b) :B(l) =10].
1
Thus, the projection of b onto the null space of A is:
1
v:(O.
1
Matlab code and output for this task is given below.
format rational;
vi = [1; 1; -11;
ul = v1 / norm(vl);
el = [1; 0; 0];
u2 = el - (dot(ul, e1) / dot(ul, uil)) * ul;
u2 = u2 / norm(u2);
e2 = [0; 1; 0];
u3 = e2 - (dot(ul, e2) / dot(ul, uil)) * ul - (dot(u2, e2) / dot(u2,
u2)) * u2;
u3 = u3 / norm(u3);
disp('Orthonormal basis:');

Orthonormal basis:

disp('ul:");

ul:
disp(ul);
780/1351
780/1351
-780/1351

disp('u2:');

u2:
disp (u2);
881/1079
-881/2158
881/2158

Amrita School of Artificial Intelligence
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2. Assignment 34
Connecting Geometry with Linear Algebra

disp('u3:"');

u3:

disp(u3);

0
985/1393
985/1393

3. What point on the plane x+ y—z=0is closest tob=(210)

Hint project b on to null space (right) of A=[ 1 1 -1]. Get those vectors as columns of Matrix B and
project b into column space of B.

/ Given data

[1 1 -17; J Matriz 4

[2; 1; 01; / Vector b

null(A, 't');

proj_b = B * inv(B' * B) * (B' * b);

disp('The point on the plane closest to b is:');

W o =
non

The point on the plane closest to b is:

disp(proj_b);

RESULTS

1. Connections of linear algebra with Geometry is revisited.

2. Solution of linear equations and its connection with the null space of transformation matrix is
discussed.

Amrita School of Artificial Intelligence 21






3 Assignment 35
Definiteness of Symmetric Matrices

3.1 Introduction

Symmetric matrices are associated with pure quadratic polynomials which in most two variable
cases take the shape of parabolas with vertex at origin. The other shapes possible are 1) a channel
with parabolic cross section and 2) saddle.

In case of two variables, quadratic polynomial is of the form

¢ (X)=¢p (x1,x2)= ax? + 2bx1 x4 X5

In matrix form ¢ (x) = (x; x2)

a
b

Now matrix A characterizes the shape of the function. Depending on elements in A (to be more
precise, its eigen values) , it can take following shapes.

Figure 3.1: 3D visualization of quadratic form-1.
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Figure 3.2: 3D visualization of quadratic form-2.

Figure 3.3: 3D visualization of quadratic form-3.

-100

Figure 3.4: 3D visualization of quadratic form-4.
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3. Assignment 35
Definiteness of Symmetric Matrices

Figure 3.5: 3D visualization of quadratic form-5.

=

2 e
=3

Figure 3.6: 3D visualization of quadratic form-6.

It is also associated with probability distributions like multivariate normal distributions in the form
of covariance matrices.

Definition: Let A be nxn and symmetric (we assume elements of A are real),
Then if

1) xT Ax> 0V (x #0) € R", then A is positivedefinite

2) xTAx =0V (x #0)e R", then A is positive semidefinite

3) x Ax< 0V (x #0)e R", then A is negative definite

4) xTAx <0V (x#0)e R", then A is negative semidefinite

5) xT Ax>0 for some xe€ R", and x” Ax < 0 for some other x€ R" A is inidefinite

Prove that if A is real, symmetric and xT Anxnx>0;Vx#0
=all eigenvalue 1 >0

Proof:

Amrita School of Artificial Intelligence



3. Assignment 35
Definiteness of Symmetric Matrices

Aisreal and symmetric implies eigenvalues are real and eigen vectors are real and orthogonal.
We assume all eigenvalues are distinct

Let x1,Xx2,....... X, be unit norm eigen vectors corresponding to eigen values 1,
Az....,Analso, x; 1 xj, i# j and they span vector space R".

Therefore, we can express any x as linear combination of eigenvectors of A

x£0eR"=> x=cix1+cox2+...+ ¢ X, each ¢, €R
Ax=A(c1 X1+ CoXxo+...+CpXp) = CLA1 X1+ o Ao Xo + ...+ CpA Xy
xTAx = (c1x1+Coxo+...+ cnxn)T(chxl +ClaXo+ ...+ Cpdnxy)
xTAx=cfA1+ Az +...+ 54, > 0= every A; > O since ¢ > 0 Vi

Creating 2x2 Matrices with desired eigen values

As per spectral theorem, square matrix A with distinct eigen values can be decomposed into
A=SAS™!

If A is real and symmetric, eigenvalues are real and eigenvectors are orthogonal (also real) .

a1y a1

LetustakeS—ﬂ[ 1 -1 ;then S =71 .1

A= L 1 1 A0 1 1 1 _1 1 1 A0 1 1
V1 =1l o A |v2l1 =1 721 =1l o A |l1 =1

We use this to create a symmetric matrix with desired eigen values.

B=[1 1; 1 -1];

A=(1/2)*Bxdiag([11 12])*B;

x2=-3:.1:3;

[X1,X2]=meshgrid(x1,x2);

fx=A(1,1)*X1.72+A(2,2)*X2.72+2xA(1,2) *X1.*X2;surfc(X1,X2,fx)
Creating 2x2 orthogonal matrices using QR decomposition of random matrices
We now A=QR.

Where Q is an orthogonal matix.

Amrita School of Artificial Intelligence
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This can be employed for creating quadratic polynomials with different shapes.

close(gcf)

11=-3;

12=3;

B=randi(10,2,2);

[Q,RI=qr(B);

A=Q*diag([11 12))*Q’;

x1=-3:.1:3;

x2=-3:.1:3;

[X1,X2]=meshgrid(x1,x2);
fx=A(1,1)*X1.A2+A(2,2)*X2./2+2*A(1,2)*X1.¥X2;

surfc(X1,X2,fx)
We already know, Orthogonal matrices can also be created using SVD.

Theorem

Every square matrix can be factored into a Orthogonal matrix and a symmetric positive
semidefinite matrix.

If A is full rank (nonsingular) then the second matrix is positive definite.

A=UzvT
A=UWVTvzvT and Viv =1

A= WUvh wzvh
—— ——

orthogonalpositive semidefinite

Note that
wvhHTwvh=vuTuvT=vvT =1 hence UVT is an orthogonal matrix.
vV VT ispositive semidefinite since X is.

Assignments

Amrita School of Artificial Intelligence
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3. Assignment 35
Definiteness of Symmetric Matrices

1. If A and B are nxn symmeyric positive definite matrices then prove that A+B is positive definite.

SOLUTION

To prove that if A and B are symmetric positive definite matrices, then A+ B is also positive definite,
we proceed as follows:

Given that, A and B are n x n symmetric positive definite matrices.

A symmetric matrix M is positive definite if for all non-zero vectors x € R”, we have:

x! Mx > 0.
Since A and B are positive definite, we know that:
x'Ax>0 and x'Bx>0 forallxeR", x#0.

Now consider the matrix A+ B. We need to show that A + B is positive definite. For any non-zero
vector x € R"?, we have:
x! (A+B)x = x! Ax+x" Bx.

Since A and B are positive definite, both terms on the right-hand side are strictly positive:
x'Ax>0 and x'Bx>0.

Therefore:
x' (A+B)x=x! Ax+x'Bx>0.

This shows that for allx # 0, x (A + B)x > 0, which means that A + B is positive definite.
Since we have shown that for any non-zero vector x € R”, xT(A+ B)x > 0, we conclude that A+ B is
positive definite.

A+ B is positive definite.

Matlab code and output to verify this theorem is given below.

n = 3;

R1 = randi(mn,n);
R2 = randi(n,n);

A = R1' % R1;

B = R2' * R2;
disp("Matrix A:");

Matrix A:
disp(A4);
22 20 22
20 19 20
22 20 22

disp ("Matrix B:");

Matrix B:

disp(B);
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6 10 9

10 22 15

9 15 14
C = A + B;

disp("Matrix sum, C=A+B");

Matrix sum, C=A+B

disp(C);
28 30 31
30 41 35
31 35 36

isPositiveDefiniteA
isPositiveDefiniteB all(eig(B) > 0);
isPositiveDefiniteC all(eig(C) > 0);
fprintf ('Matrix A is positive definite: %d\n', isPositiveDefiniteA)

all(eig(A) > 0);

b

Matrix A is positive definite: 1

fprintf ('Matrix B is positive definite: J%d\n', isPositiveDefiniteB)

b

Matrix B is positive definite: 1

fprintf ('Matrix C = A + B is positive definite: %d\n',
isPositiveDefiniteC) ;

Matrix C = A + B is positive definite: 1

2. If A is an eigenvalue of nonsingular square matrix A, then % is an eigen value of AL

SOLUTION

Proof

Let A be a nonsingular square matrix. Suppose A is an eigenvalue of A. By definition, there exists a

non-zero vector v such that:
Av = Av.

We aim to show that % is an eigenvalue of A™1.
1. Starting from the eigenvalue equation, we multiply both sides by A~!:

A Av) = A7 (Av).
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2. Using the property A~! A = I (where I is the identity matrix), we have:

Iv=2AA"'v.
3. This simplifies to:

v=1A"lv.
4. Rearranging gives:

A4V=%V

Thus, we have shown that the vector v is an eigenvector of A™! corresponding to the eigenvalue %
ThadmawewmmMemmﬁAmandngMedamm@gdunmumAﬂwn%BHM%dmwgmk
value of A71.

Hence

1
HAmmwgmwmwﬁAJanBmw@mwaﬁA*.

Matlab code and its output that verify this theorem is given below.

4 Create a diagonal matriz with the desired eigenvalues

eigenvalues = [1; 2; 3];

D = diag(eigenvalues); / Diagonal matriz with eigenvalues on the
dtagonal

4 Create a random orthogonal matriz to transform D
[Q, "] = qr(rand(3)); / QR decomposition to get an orthogonal
matriz

4 Construct the matriz 4 with the desired eigenvalues

A=Q *«D=*Q'; / A4 is symmetric and has eigenvalues [1, 2, 3]
4 Compute the eigenvalues of 4

eigenvalues_4 = eig(A);

/ Compute the inverse of 4
A_inv = inv(A);

4 Compute the eigenvalues of A_inv
eigenvalues_A_inv = eig(A_inv);

/4 Ezpected eigenvalues for A~{-1}
expected_eigenvalues_inv = 1 ./ eigenvalues;

/4 Sort the eigenvalues for comparison
eigenvalues_A_inv_sorted = sort(eigenvalues_A_inv);
expected_eigenvalues_inv_sorted = sort(expected_eigenvalues_inv);

4 Display results
fprintf ('Eigenvalues of A: \n');

Eigenvalues of A:

disp(sort(eigenvalues_A)); / Sort for clarity
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fprintf ('Eigenvalues of A~{-1}: \n');

Eigenvalues of A~{-1}:

disp(eigenvalues_A_inv_sorted);

1/3
1/2
1

fprintf ('Expected eigenvalues of A~{-1}: \n');

Expected eigenvalues of A~{-1}:

disp(expected_eigenvalues_inv_sorted);

1/3
1/2
1

4 Check if the exzpected eigenvalues are close to those of A~{-1}
isClose = all(abs(eigenvalues_A_inv_sorted -
expected_eigenvalues_inv_sorted) < 1e-10);
if isClose
fprintf ('The expected eigenvalues are indeed eigenvalues of A

“{-1}.\n');
else
fprintf ('The expected eigenvalues are NOT eigenvalues of A
“{-1}.\n');
end

The expected eigenvalues are indeed eigenvalues of A~{-1}.

1. If Ais symmetric positive definite prove that A?> and A~! are also positive definite.

N

Generate a random symmetric positive definite matriz 4
4; ) Size of the matriz

randn (n) ;

A" x A; J 4 4is now symmetric and positive definite

= o= B
non

4 Check if A4 <s positive definite
disp('Eigenvalues of A:')
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Eigenvalues of A:

eig A = eig(4);
disp(eig_A); / Eigenvalues should all be positive

39/5608
1133/964
2533/947
1641/263

4 Calculate 472
A_squared = A~2;

4 Check 1if A°2 is positive definite
disp('Eigenvalues of A~2:')

Eigenvalues of A~2:

eig_A_squared = eig(A_squared);
disp(eig_A_squared); / Evgenvalues should all be positive

37/765048
163/118
4357/609
16001/411

J Calculate A~{-1}
A_inv = inv(A);

/4 Check <f A~{-1} is positive definite
disp('Eigenvalues of A~{-1}:')

Eigenvalues of A~{-1}:

eig_A_inv = eig(A_inv);
disp(eig_A_inv); / Eigenvalues should all be positive (tnverses of
the eigenvalues of 4)

263/1641

947/2533

964/1133
5608/39
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4 Verifying if both A4°2 and A~{-1} are symmetric positive defintte
is_A_squared_pos_def = all(eig_A_squared > 0);
is_A_inv_pos_def = all(eig_A_inv > 0);

if is_A_squared_pos_def

disp('A~2 is positive definite.');
else

disp('A~2 is not positive definite.');
end

A~2 is positive definite.

if is_A_inv_pos_def

disp('A~{-1} is positive definite.');
else

disp('A~{-1} is not positive definite.');
end

A~{-1} is positive definite.

1. If Ais symmetric positive definite and C is nonsingular ,then B = CT AC is also symmetric
positive definite.

SOLUTION

Proof

Let A € R**" be a symmetric positive definite (SPD) matrix. We will prove that both A% and A~! are
also positive definite matrices.

Proving that A? is Positive Definite:
Since A is symmetric positive definite, for any non-zero vector x € R”, we have:
x" Ax>0.
Now, consider the matrix A%. We need to show that for any non-zero vector x € R™:
xT A%x > 0.
Using the property of matrix multiplication:
xTA%x=x"AAx = (Ax)" Ax.

Let y = Ax, where y # 0 because A is positive definite and Ax # 0 for all non-zero x. Thus, the expres-
sion becomes:

xTA%x =y Ay.
Since A is positive definite, we know that:
yTAy > 0.
Therefore:
x" A%x > 0.

This proves that A? is positive definite.
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Proving that A~! is Positive Definite:

We now show that the inverse of a symmetric positive definite matrix, A~!, is also positive definite. To
do this, we need to show that for any non-zero vector x € R":

xTA x>o0.

Let y = A~'x. Then, multiplying both sides by A, we have Ay = x. Substituting this into the expres-
sion, we get:
xTA x= (AT A Y (Ay) = yT Ay.

Since A is positive definite, we know that:
yTAy>0 forall y#0.

Thus, it follows that:
xTA  x>o0.

Therefore, A~! is positive definite.
Matlab code and its output verifying this theorem is given below.

A = rand(3);

A = A" x A

C = rand(3);

B =C' % A % C;

tolerance = 1e-10;

is_symmetric = norm(B - B', 'fro') < tolerance;
eigenvalues_B = eig(B);

is_positive_definite = all(eigenvalues_B > 0);
disp('Eigenvalues of B:')

Eigenvalues of B:

disp(eigenvalues_B)

5735/473
32/2501
44/16795

if is_symmetric

disp('B is symmetric.')
else

disp('B is not symmetric.')
end

B is symmetric.

if is_positive_definite

disp('B is positive definite.')
else

disp('B is not positive definite.')
end
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B is positive definite.
RESULTS

1. Properties of eigen values of symmetric matrices are verified.
2. Method to create positive symmetric matrices is reviewed

3. Relationship between nature of definiteness and eigen values of a symmetric matrix is studied.
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4 Assignment 36
Shifted QR Decomposition Algorithm

4.1 Uses of Matrix Decomposition
A=LU is mainly for solving linear system of simultaneous equations of the form, Ax=»b
Spectral decomposition is mainly for computing A* and e”

Applications of Singular Value Decomposition (SVD) are plenty starting from compression to
indexing and searching.

Many are wondering the use of QR Decomposition. Its main use is in Eigenvalue value computation
of large matrices . Here is a code demonstrating how it is used for the task. Figure out how it
working? Following Matlab code demonstrate the heart of the very useful QR Algorithm- iteratively
extract eigen values without solving AX = 1X.

A=randi (10,2,2);
sort (eig(A))

ans = 2x1
-2.8310
8.8310

B=A;
for i= 1:10
[Q Rl=qr(B); / B=(A.
4 Now create a mew B=R{ and repeat the computation.
4 B retains eigen wvalues of 4 but approaches to an upper
triangular matric
4 That %s, diagonal elements of B approaches to etgen wvalues of
4
B=R*Q;
end
sort (diag(B))

ans = 2x1
-2.8309
8.8309
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Note that we will always get eig(A) and diag(B) as same set of values.

It is how eigenvalues are computed in practice.

This Computation can be faster using shifted QR decomposition.

4.2 Tasks

1. Write a note about shifted QR decomposition for eigenvalue computation.
SOLUTION

The Shifted QR Algorithm is an iterative method used to compute the eigenvalues of a square
matrix. The method improves the convergence of the basic QR algorithm by applying a shift
to the matrix in each iteration, typically using the bottom-right element of the current matrix.
This shift accelerates convergence by reducing the off-diagonal elements of the matrix faster.

Let A e R™*" be a real square matrix. The steps for the shifted QR algorithm are:

1. Start with the matrix A.

2. At each iteration k, choose a shift ug, usually the bottom-right element of the current matrix
Ag.

3. Perform a QR decomposition on the matrix Ay — pux I, where I is the identity matrix and py is
the shift.

Ak — pil = Qr Ry
where Qg is an orthogonal matrix and Ry is an upper triangular matrix.
4. Update the matrix:
Ajer1 = R Qe + prd
5. Repeat until A; converges to an upper triangular matrix, from which the eigenvalues can be

read off as the diagonal elements.

The algorithm for the simple shifted QR algorithm is:

Algorithm 1 Shifted QR Algorithm for Eigenvalue Computation

: Input: Matrix A e R™*"
: Output: Eigenvalues of A
. Initialize Ag = A, tolerance ¢, and max iterations max_iter
for k =0 to max_iter do
Let ux = (Ag)n,n {Choose shift as the bottom-right element of Ay}
Compute QR decomposition: Ay — puxl = QR
Update: Agi; = RpQp + il
if | Ax+1 — Akll <€ then
break {Check convergence}
end if
: end for
: Return: Diagonal elements of A as the eigenvalues

@ XN DUk b

— = =

The algorithm terminates when the off-diagonal elements of the matrix Ay are sufficiently small
(below a certain tolerance).
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Convergence

For symmetric matrices, the shifted QR algorithm converges rapidly to the eigenvalues. The
choice of shift py affects the convergence speed; using the bottom-right element is a common
and effective choice.

2. Write amatlab code for the same.

SOLUTION

Matlab code for executing the shifted QR algorithm and its output is given below. This compu-
tational approach verified the simple Shifted QR algorithm for symmetric matrices.

A rand (4) ;
A=A+ A", [ Naking the matriz symmetric
4 Parameters
n = size(4, 1);
tol = 1e-12;
max_iter = 500;
Ak = A;
shifted_eigenvalues = [];
for k = l:max_iter

mu_k = A_k(n, n);

[Q_k, R_k] = qr(A_k - mu_k * eye(n));

Ak = R_k * Q_k + mu_k * eye(n);

if norm(tril(A_k, -1), 'fro') < tol

break;

end
end
shifted_eigenvalues = diag(A_k);
direct_eigenvalues = eig(A);
sorted_direct_eigenvalues = sort(direct_eigenvalues);
sorted_shifted_eigenvalues = sort(shifted_eigenvalues);
disp('Eigenvalues from the built-in eig function:');

Eigenvalues from the built-in eig function:

disp(sorted_direct_eigenvalues);

-1.3356
-0.5663
0.2032
4.7619

disp('Eigenvalues from the shifted QR algorithm:');

Eigenvalues from the shifted QR algorithm:

disp(sorted_shifted_eigenvalues);
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-1.3356
-0.5663
0.2032
4.7619

if isequal(round(sorted_direct_eigenvalues, 8), round(
sorted_shifted_eigenvalues, 8))
disp('The eigenvalues computed by both methods match.');
else
disp('The eigenvalues computed by both methods do not match
D

end

The eigenvalues computed by both methods match.

RESULTS

1. Various Matrix decompositions and their applications are revisited.

2. Eigen values of matrices are extracted using repeated use of QR— decomposition on small ma-
trices.

3. Shifted QR decomposition algorithm is discussed and computationally verified on symmetric
matrices. On non-symmetric matrices, there are significant difference in eigen values com-
puted through simple shifted QR decomposition algorithm.
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Assignment 37
Multivariate Optimization

5.1 Calculus Basics for Optimization

The calculus method of optimization involves finding the maximum or minimum values of func-
tions, commonly known as extrema, by analyzing the behavior of their derivatives. This technique is
frequently applied in computer science, engineering, economics, and various other fields to optimize
resource allocation, compute costs, and perform similar tasks.

1.

Single-variable Functions

For a single-variable function f(x), the calculus-based optimization process follows these steps:

Algorithm 2 Optimization of Single-variable Function

— =

p—
w

Input: A single-variable function f(x).
Compute the first derivative f’(x).
Set f'(x) = 0 and solve for x to find the critical points.
Compute the second derivative f”(x).
if f”(x)>0 then
The critical point is a local minimum.
elseif f(x) <0 then
The critical point is a local maximum.
else
The second derivative test is inconclusive.

: end if
: If the function is defined on a closed interval, evaluate f(x) at the endpoints and compare with

values at critical points.

: Output: Local maxima and minima of f(x).

2.

Bivariate Functions

For a bivariate function f(x, y), the process involves partial derivatives and the Hessian determinant.
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Algorithm 3 Optimization of Bivariate Function

1: Input: A bivariate function f(x, y).
2: Compute the partial derivatives fy = % and f) = %.
3: Set fy =0and fj =0 and solve for x and y to find the critical points.
4: Compute the second partial derivatives fyy, fyy, and fy,.
5: Calculate the determinant of the Hessian matrix D = fyx fy — ( fxy)z.
6: if D> 0and fy, >0 then
7. The critical point is a local minimum.
8: elseif D >0and f, <0 then
9:  The critical point is a local maximum.
10: elseif D <0 then
11:  The point is a saddle point.
12: else
13:  The testis inconclusive.
14: end if
15: If f(x, y) is defined over a closed region, evaluate f(x, y) along the boundary to ensure no extrema

are overlooked.
16: Output: Local maxima, minima, or saddle points of f(x, y).

Following is a plot of a function with different kinds of turning points.The function is given by
fx) =x(—cos(1) —sin(1) + sin(x))

Blue curve indicates the function
Red curve indicates derivative of the same function.

Note that where ever derivative function crosses x axis the original function attains maxima, minima
or an inflection.

fx in blue, dfx in red

/min max S / imin

Matlab code for above diagram

\Jone wariable function with different inflection points

\/fz=z(-cos(1)-sin(1)+sin(z))
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close(gct)

h=0.1;

x=-6:h:6;

a=cos (1) ;

b=sin (1) ;

c=(-a-b)+sin(x);

fx=x.%c;

dfx=diff (fx)/h;

figure

plot (x,fx);

ax = gca;

ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
hold on

plot(x(l:end-1),dfx);

caption = sprintf('fx in blue, dfx in red');
title(caption, 'FontSize', 20);

The following figure shows the sign of second derivatives at the turning points.

() <0

Lo;allly approximated parabolas and the sign of their
second derivatives at the turning points

Basically there are two kinds of algorithm for finding turning points.

1. a. gradient ascent.

For finding the maxima point, we move along gradient at the current location. Here the update rule
i8Xp+1 = Xn +1f" (%)

Gradient (positive means function is increasing towards right, otherwise left) at any point indicate
the direction as wells rate at which function is changing. Multiplier is step length. In many
algorithms the quantity is reduced as iteration number is increased.

1).b gradient descent.

For finding the minima point, we move opposite to gradient direction at the current location. Here
the update rule is x,,+1 = x,, — " (xy)
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2. Newton method which move based on gradient (first order derivative) and curvature (second
order derivative) at the current location.

_ f/(xn)
" (xn)

This just find turning point. It always move towards nearest turning point. It can be maxima,
minima, or a saddle point.

Xn+1 = Xpn

Two variable function and its turning points. A function Exhibiting all kinds of turning points in R?.

f(x,y) =25x* —12x* —6xy +25y* — 24x*y* — 12y*

Turning points of the function

f(x,y) =25x% —12x* —6xy +25y° — 24x°y* —12y*

close(gcf);
=-1.2:.1:1.2;
y=x;
[X,Y]=meshgrid(x,y);
fxy=26+X."2-12*%X."4-6%x(X.*xY)+25*%Y."2-24*%x(X."~2) .*x(Y."2) -12%Y."4;
figure;
surfc(X,Y,fxy);
figure
contour (X,Y,fxy)

Figure 5.1: Surface plot of polynomial expression.

The contour plot showing the location and nature of critical points are shown in Figure 5.2.
Figure 5.3 shows the direction of functional growth/ decay

close(gctf);
=-0.9:.1:0.9;
y=X;
[X,Y]=meshgrid(x,y);
fxy=25+X."2-12*%X.74-6%x(X.*xY)+25*%Y.~2-24*%x(X."~2) .x(Y."~2) -12%Y."4;
[px,pyl=gradient (fxy,.5,.25);
contour (X,Y,fxy), hold on
quiver(X,Y,px,py), hold off, axis image

Amrita School of Artificial Intelligence 44



5. Assignment 37
Multivariate Optimization

%]
| . ! | | ' ' . - - T —— — :
n /J’/’//l v v v L4Nrdn 4 ‘\\\\
S =
4 m - o ///.,.I.hf_\\\\\\‘.\\
s om‘o. .ML C A AN TN Pr s s
2 = S NN T L LA rm s,
.M - © © .Pl.v )
L 5 B E 1o m Y SRRV v\,.fuvﬁl*:.h/\\\\\\\ .
. o P a4 [ NN
L 4 = [} | / N
o .m /
f G
i o™
L , {18 ©
)
| —
,_ =t
L 1o B
<
=t
L o g
< =t
<
L RIS =
<@ )
o=
I
€ ©
F £ F Q
2 < m
1+
..W 0 .o
[ ® ¢ A«
£ To)
) L , , , - 9
- @ © <+ o o o « ' 5
o
&

45

Figure 5.3: Direction of growth/ decay of f(x, y) near the critical points.
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How do we characterize the turning points.

Here we take the help of Madhava(Taylor) series expansion at the turning point.

1
fx) = fx") +x—x)TV ") + E(x—x*)Tvzf(x*)(x— x*)

At the turning point, if we approximate the function up to second order, gradient vector V f(x*)is a
zero vector. So we only have first and third term. The first term is a constant. The third term is a pure
quadratic function. The quadratic term involving hessian matrix take a shape according to the
curvature of function at the turning point. If it is a minimum point, the parabola will be ‘upward
open’ (or convex). If it is a maximum point, the parabola will be ‘downward open’ (or concave).

This in turn is indicated by the ‘definiteness’ of the hessian matrix evaluated at the turning point.

The turning point x* corresponds to a minimum point if V2 f(x*) is positive definite.

Mathematically, at x* the function is a minimum if V2 f (x*) > 0.

The turning point x* corresponds to a maximum point if V2 f (x*) is negative definite.
Mathematically, at x* the function is a maximum if V2 f(x*)<o0.

The turning point x* corresponds to a saddle point if V2 f (x*) is indefinite.

Assignment.

1. Determine the linear and quadratic approximation of the following function around the given
point.

1
flxy)=2x*+y*+ Cya at(2,2)

2x2 +

SOLUTION

The Taylor series expansion of a function f(x, y) around the point (xy, yo) is given by:

of of
fx, ) = f(xo0, y0) + PP (xo,y())(x Xo) + 3y o) =0
1[0°f o O°f 0*f 2
) - 22— - - — - .
+2 6x2 (x0,¥0) (x xO) * dxéy (xo,J/o)(x xO) (y yO) * 6y2 |(X0,J/0) (y J/O)

To find the linear and quadratic approximations of f(x, y), we will use the second-order Taylor
series expansion around the point (2, 2).

we first evaluate f(2,2):

1 193

_ 2 2 _ = — =
f@22)=2@%)+ @)+ oo =84+ o= T

Next, we compute the first derivatives. The partial derivative with respect to x is given by

0 2
0x (2x2 + xy?)?

Evaluating at (2,2),
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of 42)+2* 12 511

LI =4 8- —— =,
oxlea ¥ g2 256 64

The partial derivative with respect to y is

of , x%y

dy AT Yn xy?)2’
Evaluating at (2,2),
af 24)(2) 8 127

=2(2) - =4-—=—
ayle2 @) (16)2 256 32

Next, we find the second derivatives. The second derivative with respect to x is

f 8x% + y?
0x2 (2x2+xy?2)3
Evaluating at (2,2),
2f ,_ 36 _ 4087
ox2l@ 4096 1024°

The second derivative with respect to y is

=2———7 .
ay? (2x%+ xy?)3

Evaluating at (2,2),

Pf , 8 _ 1023
dy?le2 © 4096 5127
The mixed partial derivative is
0° x? 0
f —@x*+x yz).

0x0y T2 +xy2)3 dy

Calculating

i(2x2 +xy2) =2xy
ay ’

and evaluating at (2,2),

0 f _ 4 g 32 1
dxdyle2  (16)3 4096 128
The Taylor series expansion about (2,2) is given by
f,y=f@2 2)+0f ( 2)+6f ( 2)+1 62f‘ (x-2)*+2 ’f (x—-2)( 2)+azf (y—=
xY)=f22)+=— xX=2)+—=— -2)+=- = x— — x— - — -
¥ 0x 122 ayle2 Y 2 1 0x? 122 0x0y 22 Y 0y? 122 Y

Substituting the computed values, we have
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Foy) =~ 193 N 511(x 2+ 127( 2+ 1 4087(x 2)2 1 (x—2)( 2+ 1023( 2)2
= 16 64 32 Y 211024 64 y 512 y ’
The linear approximation at (2,2) is

L | 193 N 511( 2+ 127( 2

XyY)=—+—(x- —(y-2).
V=76 " 6a 32 Y
The quadratic approximation is
193 511 127 1 [4087

1 1023
(x—2)2—a(x—Z)(y—2)+—(y—2)2 .

QUON=Tg T TP g VA 512

1024

2. The function f (x,y) = (x —2)* + (x -2 y2)2 has 3 turning points . Prove analytically that these
are at (1,0), (2,-1),(2,1).

SOLUTION
Given the function
fxy) = (x-2)*+(x-2y%)%

we calculate the first partial derivatives:

= 4x—4—-4)%
fy=-8y(x-2y).

Setting the first partial derivatives to zero:

1. From f; =0:
4x-4-4y>=0 = x=1+)°
2. From f), =0:
—8y(x—2y2) =0 = yzOorx:Zyz.
Casel: y=0

Substituting into x = 1+ y*:
x=1= (1,0).

Case 2: x = 2

Substituting into x = 1 + y:

2y2:1+y2:>y2:1:y:10ry:—1.

Fory=1:
x=2 = (2,1).

For y=-1:
x=2 = (2,-1).

Summary of Critical Points
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The critical points are: - (1,0) - (2,1) - (2,-1)
Second Partial Derivatives

Calculating the second partial derivatives:

fxx =4,
fyy =32y,
fxy =16y.
Summary table
SL.No Critical Points r t S D=rt-s?
1 (1,0) 4 0 0 0 (inconclusive)
2 2,1) 4 32 16 -128 (saddle point)
3 2,-1) 4 -32 -16 -384 (saddle point)

Table 5.1: Critical Points and Conclusions

3. Compute Hessian at these points and decide the nature of the points
(minima,maxima,inflection)
SOLUTION
Hessian Matrix

The Hessian matrix is defined as:

H — fxx fxy .
Fxy  fyy
The second partial derivatives are:
fxx = 4’
/) yy =32,
fxy =16y.
Thus, the Hessian matrix becomes:
[ 4 16y
|16y 32y|°
Evaluate the Hessian at Critical Points
1. At (1,0):
fyy=32-0=0,
4 0
H(1,0) = .
ao=[ 9

.. H is positive semi-definite The determinant is

det(H)=4-0-0>=0 (inconclusive).

2.At(2,1):
fyy=32-1=32,
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4 16
1) = [16 32] '
.". H is positive indefinite. The determinant is

det(H)=4-32— 162 =128 -256 = —128 (saddle point).

3.At(2,-1):
fyy=32-(-1)=-32,

4 -16
H(z’_l)_[—ls —32]'

.. H is positive indefinite The determinant is

det(H) =4-(—32) — (-16)*> = —128 - 256 = —384 (saddle point).

RESULTS

1. Second partial derivative test is revisited.
2. Nature of exrtrema is identified with the nature of the Hessian matrix.
3. Role of Hessian matrix in identifying the nature of extrema is revisited.

4. Taylor series expansion is used to write the linear and quadratic approximation of a differen-
tiable function about a point.

5. Nature of extrema of a given function is examined using the Calculus approach.
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Constrained Optimization

6.1 Introduction
In optimization theory, constraints represent region of search. It is a set of points on which we eval-

uate a function called objective function and find out at which point( value of the variables) the
function attains maxima or minima.

Usually we specify the search region by a set of equality and inequality constraints.
In two variable case we can use MATLAB to plot/color the region.

Let us plot the region defined by following inequalities

X+y<5
x+y=0
x>-3

y>-3

Matlab code to plot the region bounded by these inequalities is given below.

v = -10:0.01:10; 4 plotting range from -7 to 7
[x, y] = meshgrid(v,v); / get 2-D mesh for = and y
conditions = (x+y<5) &(x+y>0)& (x> -3) & (y > -3);
cond = zeros(length(v)); / Inttialize
cond(conditions) =NalN;

surf(x, y, cond)

Ahold on

ax = gca;

ax.XAxisLocation = 'origin';

ax.YAxisLocation = 'origin';

view (0,90)

hold off

Output of the code is shown in Figure 6.1.
Assignment Q1

Figure out how the program works. Can you find out a way in matlab to change the black color to
red. I do not know how to do it.
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Figure 6.1: Common region bounded by the inequalities.

close(gctf)

v = -10:0.01:10; 4 plotting range from -10 to 10
[x, y] = meshgrid(v,v); 4 get 2-D mesh for = and y
conditions = (x+y<5) & (x+y>0) & (x > -3) & (y > -3);
cond = zeros(length(v)); / Initialize

cond (conditions) = NaN; / Set condition area to Nal (not plotted)

/4 Create the surface plot
h = surf(x, y, cond, 'FaceColor', 'flat', 'EdgeColor', 'mnone');

4 Set (CData for the colors
h.CData = cond;

/4 Set the colormap
colormap([1 0 O0; 1 1 11); / Red for Nall areas, White for 0 areas

4 Manually set the color of the areas
h.CData("isnan(cond)) = 1; / Set non-Nall areas to white (0)
h.CData(isnan(cond)) = 2; / Set Nall areas to red (1)

4 Adjust azes properties

ax = gca;

ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
view (0, 90);

hold off;

Example 1.

Replace appropriate line in the above piece of code with the following

v = -5:0.01:5;
conditions = (x.72+y."2<20) \&(x."2-y.~2<10);

Amrita School of Artificial Intelligence 52



6. Assignment 38
Constrained Optimization

Figure 6.2: Revised plot with change in constraints.

v = -5:0.01:5; 4 plotting range from -10 to 10

[x, y] = meshgrid(v,v); 4 get 2-D mesh for z and y

conditions = (x.72 + y.”2 < 20) & (x.72 - y.~2 < 10); [ Define
conditions for the region

cond = zeros(length(v)); / Inttialize
cond(conditions) = NaN; / Set Nall where the condition is met (red
areas)

4 Create the surface plot
h = surf(x, y, cond, 'EdgeColor', 'mnone');

4 Set the colormap: white for background, red for the condition
areas

colormap([1 1 1; 1 0 01); 7 White for Nall, red for areas where
conditions hold

4 Use AlphaData to make white regions transparent

h.AlphaData = “isnan(cond); / I for non-Nal (red) areas, 0 (
transparent) for others
h.FaceAlpha = 'flat'; 4 Apply per-vertex transparency

4 Adjust azes properties

ax = gca;

ax.XAxisLocation = 'origin'; Set X-azis at origen
ax.YAxisLocation = 'origin'; Set Y-azis at origin
ax.XColor = 'k'; Set X-axis color to black

ax.YColor k'
ax.LineWidth = 1.0;
visibrlity

Set Y-azis color to black
Thicker azes lines for better

SR e e e

4 Bring the azis lines to the front
ax.Layer = 'top'; /4 This makes sure the azes are drawn over the
surface plot

/ Set the wiew to 2D
view (0, 90);
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4/ Enable tick marks

ax.XTick = -5:1:5; 4 Set X-axzis tick positions
ax.YTick = -5:1:5; 4 Set Y-azis tick positions
ax.XTickLabel num2cell (-5:1:5); / X-azis tick labels
ax.YTickLabel num2cell (-5:1:5); / Y-azis tick labels

4 Ensure grid ts visible
grid on;

set(gca, 'FontSize', 10); / Set font size for better wisibility of
tick labels
hold on;
4 Plot points (markers) on the azes at the tick postitions
plot (ax.XTick, zeros(size(ax.XTick)), 'k.', 'MarkerSize', 1); [/
Markers on X-azts
plot (zeros(size(ax.YTick)), ax.YTick, 'k.', 'MarkerSize', 1); [/
Markers on Y-azts
hold off;
Assignment Q2
Plot the region enclosed by following constraints. Take x and y in the range -2 to 6
(x-3)*+(y-5)=<10
2x®+3y?<35
x=0
y=0
close(gct)
v = -2:0.01:6; 4 plotting range from -2 to 6
[x, y] = meshgrid(v,v); 4 get 2-D mesh for = and y
4 Corrected the conditions statement (removed exztra parenthesis)
conditions = ((x-3/2).72 +(y-5).72 <= 10) & (2*x."2 - 3xy.~2 <= 35)
& (x>=0) & (y>=0);
cond = zeros(length(v)); 4 Initialize
cond (conditions) = NalN; / Set Nal where the condition <s met (
red areas)
/ Create the surface plot
h = surf(x, y, cond, 'EdgeColor', 'mnone');
4 Set the colormap: white for background, red for the condition
areas
colormap([1 1 1; 1 0 01); 7 White for Nall, red for areas where
conditions hold
4 Use AlphaData to make white regions transparent
h.AlphaData = “isnan(cond); /7 I for non-Nal (red) areas, 0 (
transparent) for others
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h.FaceAlpha = 'flat'; 4 Apply per-vertexr transparency

4 Adjust azes properties

ax = gca;
ax.XAxisLocation = 'origin'; [ Set X-azis at origin
ax.YAxisLocation = 'origin'; [ Set Y-azis at origin
ax.XColor = 'k'; 4 Set X-axzts color to black
ax.YColor = 'k'; / Set Y-azis color to black
ax.LineWidth = 1.0; 4 Thicker azes lines for better

visibrlity

/4 Bring the azis lines to the front
ax.Layer = 'top'; /4 This makes sure the azes are drawn over the
surface plot

/ Set the wiew to 2D
view (0, 90);

/ Enable tick marks

ax.XTick = -2:2:6; 4 Set X-azis tick positions
ax.YTick = -2:2:6; 4 Set Y-azis tick positions
ax.XTickLabel = num2cell (-2:2:6); J X-axzts tick labels
ax.YTickLabel num2cell (-2:2:6); / Y-azis tick labels

4 Ensure grid is visible

grid on;

set(gca, 'FontSize', 10); / Set font size for better wisibility of
tick labels

hold on;

4 Plot points (markers) on the azes at the tick postitions

plot (ax.XTick, zeros(size(ax.XTick)), 'k.', 'MarkerSize', 10); /
Markers on X-azts

plot (zeros(size(ax.YTick)), ax.YTick, 'k.', 'MarkerSize', 10); /
Markers on Y-azts

hold off;

Output of the above code is shown in Figure 6.3.
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Figure 6.3: Revised plot with additional constraints.

Assignment Q3.

It is a general question. The answer must be found out using high-school geometric formulas. Ifr is
the common radius of the circle, what is the common area enclosed. Note that the each circle pass
through other’s centre.

Figure 6.4: Figure for assignment question 3.

SOLUTION

Each circle has radius r, and the distance between the centers of the two circles is also r, since each
passes through the center of the other.

The area of intersection is formed by two identical circular segments, each subtending an angle of
120° (or %” radians) at the center of the respective circle.

The area of one circular segment is the difference between the area of the sector and the area of the
triangle formed by the radii and the chord. This is given by the formula:

Asegment = Asector — Atriangle
where:

0 , 2nm r* ar
Asectorzzxr =S X =
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and
1, (2m) 1, V3
A ==r'sin|—|==-r"x—=
triangle 2 ( 3 ) 2 2
Thus, the area of one segment is:
A nr? V3,
=———7
segment 3 4
Since there are two identical segments, the total common area is:
2 3
nr 3,
A =2xX|———Tr
common ( 3 4 )
Simplifying:
A 271 \/§ 9
=———-—T7
common 3 2

Therefore, the total common area enclosed by the two intersecting circles is:

2nr? V3
3 2

— 2
Acommon = r

Constrained optimization is a field of optimization focused on finding the maximum or minimum of
a function while adhering to specific restrictions, known as constraints. This approach is extensively

applied in areas like engineering, economics, operations research, and machine learning, where prac-
tical problems often involve optimizing an objective subject to various limitations.
In constrained optimization, the goal is to find the optimal solution for an objective function f(x)

while satisfying a set of constraints. These constraints typically take the form of equality or inequality

conditions on the variables involved.

Types of Constraints

* Equality Constraints: These constraints require that certain functions of the variables equal a

specified value. They are written as:

gi(x)=0 fori=1,...,m.

¢ Inequality Constraints: These constraints impose limits that must not be exceeded, commonly

expressed as:

hj(x)<0 forj=1,...,n.

Methods of Constrained Optimization

1. Lagrange Multipliers:

The method of Lagrange multipliers is commonly used for problems with equality constraints.

It involves defining an auxiliary function, called the Lagrangian, which combines the objective
function and the constraints using a set of new variables known as Lagrange multipliers. For a

function f(x) with an equality constraint g(x) = 0, the Lagrangian .Z is defined as:

ZLx, )= fx)+1gx),

where A is the Lagrange multiplier. The solution is found by setting the partial derivatives of £

with respect to each variable to zero.
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2. Karush-Kuhn-Tucker (KKT) Conditions:
For problems with inequality constraints, the Karush-Kuhn-Tucker (KKT) conditions generalize
the method of Lagrange multipliers. These conditions provide necessary conditions for a solu-
tion to be optimal, including feasibility and stationarity of the Lagrangian. The KKT conditions
are fundamental in nonlinear programming and are widely used in operations research.

3. Penalty and Barrier Methods:
These methods transform a constrained optimization problem into an unconstrained one by
adding a penalty or barrier term to the objective function. Penalty methods add a large penalty
for constraint violations by points outside the feasible region, while barrier methods create
a barrier within the feasible region to prevent the solution from approaching the constraint
boundaries too closely.

RESULTS

1. Basicmatlab commands for plotting (feasible) region are revisited.

2. Basics of constrained optimization is revisited.
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7 Assignment 39
Generating Rowspace and Kernel Us-
ing Free Variables

7.1 Back to The Basics

7.1.1 Revisiting rref () as a main tool

Quickly creating rowspace basis set and right null space basis set using row elimination.

The treatment here is slightly different from those used in complete solution to Ax = b. But it is
equivalent and produce same result.

Simplest first

Example 1

11 2
LetA_[0 1 -1

.Find rowspace basis set and right null space basis set.

Row vectors are independent. Therefore, row-space basis set is given by

{F

To find right null space basis set, we consider,

o]

This demand that solution vector to be orthogonal to row vectors.

[112

X
y
z

X 1 X 0
Thatis | y |L| 1 [&| ¥ |L] 1
z 2 z -1

Generally we go for row-elimination process to retrieve independent row-space vectors.

Row vectors are already in row-reduced format and independent. Therefore, here, row-elimination
process is not required.
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We now look for pivotal variables. (variables with first non-zero coefficient in each row)

X +y+2z=0
1
Ox+ y -z=0
|

Arrow indicate, pivot location and variable. So x and y are pivot variables.
Now, Express, all variables in terms of free variables (non-pivot variable z) .

We start from free variables and bottom rows.

Z=7
X -3
y=z=>|y | =2 1
4 1
X=-3z
-3
There fore, null space is spanned by the set 1
1
Example 2.
1 2 2 1
A=1] 2 4 6 8 |.Findrow space basis and right null space basis set.
1 2 4 7

On row-elimination

1 2 21 1 2 2 1 1 2 2 1 1 2 21
A=|2 4 6 8|=]0 0 2 6|=|00 2 6|=[00 2 6
1 2 4 7 1 2 4 7 0 0 26 0 00O
So the row space is spanned by basis set
1 0
2 0
2 1| 2
1 6

Let us find null space basis set vectors
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X
y1|1_|O
z_[O]
t

y and t are free variables. Express all variables in terms of free variables.

1 2 2 1
0 0 2 6

Start with free variables and then bottom rows to top rows

t=t
X -2y +5t -2 5
_ yo|_ y _ 1 0
Y=Y=0 2 17 e ITY o |TY -3
t t 0 1
z=-3t

X = -2y-2z-t=-2y+5t

The solution vector is Linear combination of two independent vectors. The right null space basis set

, therefore, is
-2 5
1 0
0o |’'] -3
0 1

Note that row-space dimension is 2. It is a subspace of R*.

Right nullsapce dimension is 4-2=2

Assignment

1. Find rowspace basis set and right null space basis set of the following matrix

1 2 1 1
A=|1 3 1 2
4 7 4 4
SOLUTION
Let A be the matrix
1 2 2 1 1
A=(1 3 1 2
4 7 5 4 4

We aim to find the basis for the row space and the right null space of the matrix A. To begin, we
compute the reduced row echelon form (RREF) of A. Performing elementary row operations on
A, we obtain:
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1 00 1 O
rref(A)={0 1 0 -1 O
0 01 0 1

From this reduced form, we observe that the pivot columns are the 1st, 2nd, and 3rd columns.
Hence, the rank of A is 3. The 4th and 5th columns correspond to free variables.

The row space of A is spanned by the non-zero rows of rref (A), which correspond to the non-
zero rows of A. Therefore, the basis for the row space is given by the following vectors from the
original matrix:

{1 221 1],1 312 2,475 4 4]}

Next, we solve for the right null space, which consists of all vectors x = [x1 X2 X3 X4 x5] g
such that Ax = 0. The RREF form of A yields the following system of equations:

X1+x4=0
Xo—Xx4=0
X3+ x5=0

From these equations, we express the leading variables x;, x», and x3 in terms of the free vari-
ables x4 and xs5:

X1=—X4
X2 = X4
X3 = —Xs5

Thus, the general solution for the null space is:

-1 0
1 0
Xx=x4]| 0 |+x5]-1
1 0
0 1

The vectors corresponding to the free variables x4 and x5 form a basis for the null space:

-1 0
1 0
0f,|-1
1 0
0 1

Thus, the basis for the row space is:

—_— = NN
NN~ W -
NS IEN YN

And the basis for the right null space is:

Amrita School of Artificial Intelligence 62



7. Assignment 39
Generating Rowspace and Kernel Using Free Variables

— O

i

2. For the above matrix find column-space and left null space basis set. (Hint: For the Transposed
matrix find column and right null space basis set. )

o

SOLUTION

Consider the matrix:

1
A=]1
4

N w N
=N

11
2 2
4 4

We begin by calculating the transpose of A, denoted A”:

11 4
2 3 7
AT=12 1 5
1 2 4
1 2 4

To determine the column space of A, the reduced row echelon form (RREF) of AT is computed
as:

rref(AT) =

S O O O+~
(=l el el =
o O - O O

The pivot rows in the RREF of AT correspond to the 1st, 2nd, and 3rd rows. Hence, the corre-
sponding columns of A provide a basis for the column space of A.

Thus, the basis for the column space of A is given by the 1st, 2nd, and 3rd columns of A:

2 2
13,1
7 5

Next, the left null space of A is determined by finding the right null space of A, which corre-
sponds to the free variables in rref (AT).

4

From the RREF of A7, there are no free variables, the right null space of A” is empty.

Thus, the basis for the left null space of A contains only the zero vector. This can be verified
using the rank nullity theorem for A”.

Therefore, the final results are:

- The basis for the column space of A is:

JHREA)
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- The basis for the left null space of A is empty.
RESULTS

1. Basics of the fundamental subspaces is revisited.
2. Using free variables, basis for right null space is created.

3. Big picture of fundamental subspaces is used to find basis of all subspaces of the given matrix,
A.

Amrita School of Artificial Intelligence 64



8 Assignment 40
Plotting Linear Inequality Constraints

8.1 Plotting Basics
We are about to deal with inequality constraints in Optimization Theory.

Each inequality divides search space into two halves. One half where the condition is satisfied and
the other half that does not satisfy. For example, linear inequality in 2D divides R? space as in the
following figure.

2x +3y <10 |

The intersection of all the constraints define a set of points where all the conditions are met. Our aim
is draw such regions for 2D (two variable) and 3D problems.

8.1.1 plotregion for plotting regions

The plotregion function in MATLAB is used to plot convex closed regions in 2D or 3D. This function
is particularly useful for visualizing regions defined by linear inequalities.

Let us start with plotting common regions enclosed by two variable linear constraints.
Plot the region enclosed by the following linear constraints.
x+y=<10,y<8x=<8y=0;,x=0

Note that plotregion requires that the formulation of the problem in the following format.
So we rewrite our constraints as follows

x=y=10=>-x-y=-10
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y=8=>-y=-8
X<8=>-x=-8
x=0
y=0

Accordingly we obtain,

Code for above diagram

%inequality 2d simplex

close all

A=[-1 0 -110;-1 -100 1]°;

b=[-10 -8 -8 0 0]’;

1b=[1;ub=[1;
plotregion(4,b,1lb,ub,[0.3,0.3,0.9]1,0.5);

axis equal
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8.1.2 Ploting feasible region of an LPP

Assignment 1

A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A
require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8
minutes each for cutting and 8 minutes

each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours for assembling.
Express the constraints on number of different types of souvenirs that can be produced. Plot it using
plotregion.

SOLUTION

Matlab code for this task and the out of the code is given below.

N

Coefficients of tnequalities
[-5 -8; -10 -8; 1 0; 0 11;
[-200; -240; 0; O01;

o =
non

4 Plot the feasible region
figure;
plotregion(A, b, [1, [1, 'r', 0.5);

4 Add labels and title

xlabel('x_1 (Souvenirs of type A)');

ylabel ('x_2 (Souvenirs of type B)');

title('Feasible Region for Production of Souvenirs');
grid on;
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Feasible Region for Production of Souvenirs

=
4]

Xy (Souvenirs of type B)
5

0 5 10 15 20
Xy (Souvenirs of type A)

Linear inequalities and support vector machines

Support vector machines are a group of Algorithm developed in 1990s that marked second stage of
developments of Machine learning algorithms. It could tackle the problem of overfitting the data
much more elegant way than classical methods like Decision tress(DT) and Backpropagation neural
networks(BPN). It achieved it through the concept of maximum margin separating planes. This gave
good generalization capability to SVM classifiers.

Plot the range of parameters of the line, that define the set of all lines that separate the two groups of
data
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(3.4) ¢ Datal
. e Data 2

*(4,3)

d=+1

(1,2)
®

*(2,1)

>

Letw; x1 + waxo —y = 0is aline (like the central line in the figure) that separate the two groups. There
are infinitely many such lines with different(w;, w»,y) parameters . Our aim is to plot set of all
such(wy, wy,y) triplets.

The set of points marked green should satisfy the constraintw; x; + wex, —y <0
Substituting point coordinates, we get following inequalities
2un+2wr, -y =<0

lwy +2w, -y =<0
2un+1lw, -y =<0

The set of points marked greenshould satisfy the constraintw; x; + wox2 —y =0
Substituting point coordinates, we get following inequalities
3wi1+3wr-y=0

3W1+4LU2—')’20
4w +3wr, -y =0

We can express every constraints in the form of same type of inequality (say, all greater than zero) by
multiplying each inequality in the first set by (-1).

Thus in the matrix format, all constraints are expressed as

[ 2 -2 1 [ 0 ]
-1 -2 1 w 0
1
-2 -1 1 0 .
3 3 _1 wy | = 0 ; Itis of the form Az=>0
3 4 -1 Y 0
4 3 -1 | | 0 |
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Let us plot the region specified by these constraints using plotregion.

Note that plotregion requires that the formulation of the problem in the following format.

Az=0;
lb<z<ub
4 Coefficients of inequalities
A=1[-2-21; -1 -2 1; -2 -1,1; 33 -1; 3 4 -1; 4 3 -11;
b = [0;0;0;0;0;0];

/ Plot the feasible region
figure;
plotregion(A, b, []1, [J, [0.3,0.3,0.9], 0.5);

4 Add labels and title

xlabel ('w_1"');

ylabel ('w_2"');

title('SVM -support vectors');
grid on;

RESULTS
The Matlab function plotregion is used to visualize the feasible region generated by the constraint
sets in an LPP.
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9 Assignment 41
Specifying Row-space/column-space by
an Equation or by a Set of Equations.

9.1 General Representation for Fundamental Subspaces

9.1.1 Background thoughts

Problem: Row-space by definition is set of all LC of row-vectors. Also it can be defined as space
spanned by any row-space basis set. All are identical.

We specify null space (right) of a matrix by saying that it is a set of all x| Ax = 0 vector (read x such
that Ax=0).

Another way of looking at is in terms of orthogonality. We can say, right null space is the set of all
vectors that are orthogonal to row-space.

Similarly, we can define left null space by the set of all

y|[y"T A=0 rowvector

y|AAT y=0 vector

Can we define row-space in a similar way? Yes.

We use basis set of right null space for the task.

Let B =null(A). Columns of B form a basis set for right null space.

Or rows of BT form the basis set for right null space. x|BAT x=0 vector
Similarly let C = null(AT) . Columns of C form basis set for left null space
So we define column space as y|Cy = 0.

Another important Note

All the spaces associated with a square matrix of size n x n. if they exist , are subspaces of R".

For a rank-2 3x3 matrix , rowspace and columns space are planes passing through origin. Also left
and right null space are a line of points through origin.

Can we plot these using the matlab tool ‘plotregion’.

But note that ‘plotregion’ is basically meant for plotting ‘common region’ of inequality constraints
and points.
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Specifying Row-space/column-space by an Equation or by a Set of Equations.

Can we use it for the task of plotting planes and lines. Yes.
Following lines of code does the job. Can you figure out how?.

Read the previous assignment on plotting inequalities and thin planes.

close(gct)

A=[1 2 3;3 1 1; 4 3 4];

B=(null(A))"';

B=[B; -BIl;

b=[0;-0.01];

1b=[-1 -1 -1]';ub=[1 1 1]"';
plotregion(B,b,1b,ub,[0.3,0.3,0.9]1,0.5,B"');
hold on

D=A";
C=(null (D)) ';
c=[C; -CIl;

plotregion(C,b,1b,ub,[0.3,0.3,0.9]1,0.5,C"');
axis equal
hold off

Assignment.

1. What is the equation for the row-space of the following matrix

1 2 3
A= [ 9 1 2 ] .Use row-elimination to get right null-space vector.

SOLUTION

Given matrix is first transformed into its RREF as follows.
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9. Assignment 41
Specifying Row-space/column-space by an Equation or by a Set of Equations.

1 2 3
A_ZIZ]
1 2 3
0 -3 —4
1
~10;}]
01 3
in RREF

From the RREF of 4, it is clear that pivot elements are in first and second columns and all the two
rows are non-zero. Hence rank of A is 2. The null space is the solution of Ax = 0. Using the RREE it is
clear that last variable (say) x3 is a free variable. In terms of x3 solution of the reduced system Ax =0
gives,

1
X1 =—-=X
1 373
4
Xp=—=X
2 373
X3 = X3
-1
3
Hence the right null space of A is spanned by —‘3—1
1

In Gilbert Strang’s approach, once we know the basis of the column space and the row reduced Eche-
lon form of A, then A can be decomposed as A= CR REF(A). Also using the Kronecker product, A
can be written as sum of two matrices;

A=

2
> Al jl@ RREF(A)[j,1]

j=1

Let A=

1
1
1

1

1
-1

1
-1
-1

-1
-1
1

are pairwise orthogonal.

Note that A is orthogonal matrix. Both column vectors and row vectors

[1 1 1 1
LetB=| 1 -1 1 -1 |Note thatitisasubmatrix of A. write down equation for right row-
1 1 -1 -1 |

space of B, without doing any computation.

SOLUTION

Given that A is an orthogonal matrix and B is a submatrix of A, the right row-space of B can be de-
scribed using the orthogonality property of A.

Since A is orthogonal, its rows form an orthonormal basis. Therefore, any submatrix B of A will have
rows that are linear combinations of the rows of A. The right row-space of B is thus spanned by the
corresponding rows of A.

In equation form, if B consists of rows iy, i2, ..., i; of A, then the right row-space of B is given by:

RowSpace(B) = span{a; ,a;,,...,a;}

where a; ; are the rows of A.
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9. Assignment 41

Specifying Row-space/column-space by an Equation or by a Set of Equations.

Plot all spaces associated with matrix A = [ ; ; ]

SOLUTION

Matlab code for this task and its output is given below.
A= [12; 2 3];

B = (null(A))"';

B = [B; -B];

b = [0; -0.01];

1b = [-1 -1]"';

ub = [2 3]';

4 Ensure plotregion function is defined and works correctly
try
plotregion(B, b, 1b, ub, [0.3, 0.3, 0.9], 0.5, B');
hold on;
catch ME
disp(['Error in plotregion for B: ', ME.messagel);
end

D = A';
(null(D))';
[C; -C];

Q Q
1]

try
plotregion(C, b, 1b, ub, [0.3, 0.3, 0.9], 1, C');

axis equal;
hold off;
catch ME
disp(['Error in plotregion for C: ', ME.messagel);
end
Figure 9.1: Visualization of Subspaces of A
RESULTS

1. Connection between fundamental subspaces and solution of equations is revisited.
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9. Assignment 41
Specifying Row-space/column-space by an Equation or by a Set of Equations.

2. Null space of matrices are visualized.
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10 Assignment-42
Eigenvectors And Orthogonality Con-
cepts

10.1 Core Concept Behind the Eigen Values and Eigen Vectors

10.1.1 From coordinate geometry to orthonormal vectors

Concept of Orthogonality of vectors is very important in Science and engineering. High-school
co-ordinate geometry start with orthogonal axes (x-axis and y-axis) . High-school vector algebra
begin with 3 orthogonal unit vectors i, , k . Complex numbers and associated concepts are again
built over orthogonal axes.

10.1.2 Role of orthogonal decomposition in Engineering applications

All the classical signal decomposition techniques like Fourier and wavelet theory are based on
orthogonality of functions. Many Communication Engineering techniques like OFDM depends on
orthogonality. Electromagnetic wave itself is composed of orthogonal electrical and magnetic waves.

In nutshell, orthogonality concept is embedded everywhere. Your eyes (mind) should be trained to
see it.

10.1.3 Matrix multiplication as scaling or rotation

In LA, eigen vector computation can be seen as finding orthogonal vectors.

Let us revise again. To give a mental picture about what eigenvalue and eigenvector, we interpret
‘matrix vector’ multiplication Ax as a mapping. If A is a square matrix, it does a mapping
(transformation) from to when acting (multiplying) on a vector. That means if you give x from to the
‘operator’ A, as input, it produces another vector yin . The ‘y’ in general is a scaled and rotated
version of x. There can be special directions for each A, in which, it does only scaling. Such
independent directions represented as vectors are called eigenvectors. The scaling (multiplying)
factor associated with eigen vectors are called eigenvalues.

The finding of such eigenvectors can be linked to the concept of orthogonality. It is a crucial change
in view point.

Matrix A, which we considered as an operator, is in fact a set of ordered vectors (column vectors, or
row vectors). So, the eigen vector must have some connection with these vectors.

We have

Ax=Ax=> (A— ADx =0 vector




10. Assignment-42
Eigenvectors And Orthogonality Concepts

To get a better view, let us consider 3x3 matrix

a b c
letA=|d e f
g h i

a-A b ¢ X1 0

(A-ADx= d e— f X2 |=]10

g h i X3 0

Now look for orthogonality concept that is hidden here.

The unknown vector x must be orthogonal to the rows of the new derived matrix (A— AI). That is
eigenvector is orthogonal to rowspace of (A— A1) .

For nonzero x to exist, one important thing should happen. There must be special A values that
makes rows of (A— A1) dependent. That is (A— AI) must be singular. If singular, |A— AI| . Thatis how
we compute eigenvalues for small matrices.

Once we know eigenvalues, computation of eigen vector can be seen as finding orthogonal vectors.
Gaussian elimination on A -AI = 0 can easily give that vector.

For each 1 we get one eigen vector

Let us start with 2x2 matrices

1 4
Let A=
eca=| )t |
. a b . s
For a 2 x 2 matrix,A = c & the shortcut formula for the characteristic polynomial is

A% — trace of(A)—|A| =0

First Find eigen values
Each column sum is 3. Hence 3 is an eigen value. Based on trace, we find next eigen value is 1; - 3.

Consider

1-3 4

2 -1-3

A—AII:A-glz[ y 4

fz

Note that second row is multiple of first row. Hence we need not consider it for finding an
orthogonal vector to rowspace.

or any multiple of

. . 4
Now, null space vector that is orthogonal to first row is [ 9

? ]which can be

inferred from first row.

Consider 1, -_
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Eigenvectors And Orthogonality Concepts

1+3 4

A=MpI=A+3I| °,°

|4 4
12 2
Note again that second row is multiple of first row.

which can be inferred from first row.

null space vector is

or any multiple of

Thus in general, the moment you substitute lambd a, rows become dependent and hence give space
for right nullspace vector to appear.

An intelligent student always find general rule for saving time and memory.

(If you think that you are intelligent try doing it)

and 14,1, be the eigenvalues of A.

a b
letA—[ c d

Then eigen vector corresponding to 1, is [ a_l; ]
-1
-b
a— /12

Find eigenvalues and eigenvectors of

Eigen vector corresponding to 1,

Assignment Q1

ool o2 2l )

3 3 5 -2 2
SOLUTION
. - 4
1. Here given matrixis A= [ 3 3

Eigen values are the solutions of | A— AI| = 0. Using the shortcut formula,
A% —trace(A) - |Al =0
, the characteristic polynomial is

A2 -51-6=0
A-6)A+1)=0
- /11:6and/12:—1

Using the shortcut method;

6-3
EV(A, =6)= 3]
I3
K]
1
1
-1-3
EV(Aa=-1) = 3 ]
-4
13
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Eigenvectors And Orthogonality Concepts

2 1
2. Here given matrixis A= [5 6]

Eigen values are the solutions of | A— AI| = 0. Using the shortcut formula,
A% —trace(A) - |Al =0
, the characteristic polynomial is

A2 —81+7=0
A-7A-1)=0
- /112731’1(1/12:1

Using the shortcut method;

7-6
EVIL,=7)= 5]

1

|5
1-6
EV(A,=1) = 5]
_[-5

|5

_[-1

Tl

1 -1
3. Here given matrixis A= [_ 9 o ]
Eigen values are the solutions of | A — 11| = 0. Using the shortcut formula,
A? —trace(A) — |A| =0

, the characteristic polynomial is

A2 —3140=0
AA=3)=0
- 11:3and12=0

Using the shortcut method;

EV(L =3) = 3__22]
_ 1]
-2

EV(A2=0) = 0__22]
_ —2]
-2
[t
1
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Eigenvectors And Orthogonality Concepts

% first question
A=[2 4; 3 3];
[Evec,Evals]=eig(4);
disp('Eigen values:')

Eigen values:

disp(diag(Evals));

-1
6

disp('Eigen vectors');

Eigen vectors

disp(Evec)
-4/5 -985/1393
3/5 -985/1393

%second question
A2=[2 1; 5 6];
[Evec,Evals]=eig(A2);
disp('Eigen values:')

Eigen values:

disp(diag(Evals));

disp('Eigen vectors');

Eigen vectors

disp(Evec)
-985/1393 -1020/5201
985/1393 -5100/5201
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Eigenvectors And Orthogonality Concepts

%third question
A3=[1 -1; -2 2];
[Evec,Evals]=eig(43);
disp('Eigen values:')

Eigen values:

disp(diag(Evals));

disp('Eigen vectors');

Eigen vectors

disp(Evec)
-985/1393 1292/2889
-985/1393 -2584/2889
RESULTS

1. Revisited the intuition behind the eigen values and eigen vectors along with theoretical defini-
tions

2. Eigen values and eigen vectors of given problems are evaluated and verified computationally
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11 Assignment 43
Linking Optimization With Linear Al-
gebra

11.1 Analytical Tools for Muti-variable Optimization

11.1.1 Role of Gradient and Hessian of a multivariate function

Given a smooth function f:R"” — R, we can write a second order Taylor expansion in the form:
1
Fx+Ax) = f(X)+(VF(x) Ax+ 5(Ax)THf(x)Ax +O0(IAx]?)

where V f(x) is the gradient of f at x , Hf(x) is the Hessian matrix of f at x , and Ax is some small
displacement. Note that since the Hessian matrix is symmetric, then it has n (possibly repeated) real
eigenvalues, and in particular it is diagonalizable as a real matrix. This is the heart of multi-variate
function optimization with strong roots in calculus.
Suppose the function has a critical point at x = a, so that V f(x) = 0. Then the Taylor expansion looks
like:

fla+Ax) = f(a)+ %(Ax)THf(a)Ax +0(AxP).

Thus, for small displacements Ax , the Hessian tells us how the function behaves around the critical
point.

Consider a rectangular domain as shown in figure 1 with centre as origin.
£

Figure 1. Domain of a function




11. Assignment 43
Linking Optimization With Linear Algebra

Over the domain, we can define many functions such as f (x,y) = x* + y*,
orf (x,y=1/(lxI+|yl+0.5)) . A function assign a numerical value at each point depending on its
coordinates in the domain. Usually we plot that value in another dimension as in figure 2 and 3.

Figure 2 plot of f (x,y) = x* + y?

Figure 3 plot of f (x,y = 1/ (Ix| + 1yl +0.5))

For human beings, the only dimension left is the third dimension. But we have another method that
save a dimension. Use color intensity to designate the value as in figure 4. which gives an intuitive
idea about the variation of the function in the domain
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Linking Optimization With Linear Algebra

Figure 4. visualizing function in terms of colors.

Still another way to deal with function visualization is gradient (with contour) and hessian of a
function at a given point. For 2D domain , we can plot the gradient but hessian is a matrix whose
sign of eigenvalues tell about the type of second order curvature at the point.

[x,y] = meshgrid(-2:.2:2,-1:.15:1);
Z=X.*exp(-x."2 - y.A2);

figure

surf(x,y,z);

figure

[px,py] = gradient(z,.2,.15);
contour(x,y,z), hold on

quiver (X,y,px,py), hold off, axis image

05, . .
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11. Assignment 43

Linking Optimization With Linear Algebra

1

05

4.5

1

11.2 Geometrical Approach to Idenitify Nature of a Point on z = f(x, y)

Use of data curser

11.2.1 Use of surface plots and gradient

=3 T T T T T
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Under tools there is a utility that allows you to find data values( co-ordinates, gradient values,

contour value etc)

Learn how to use this tool.

74 Figure 2

File Edit View Insert [Toolsl Desktop Window Help

Assignment Question

Ddde| k|

®

2N

Edit Plot
ZoomIn
Zoom Out
Pan

Rotate 3D
Data Cursor
Brush

Link

Reset View
Options

Pin to Axes

Snap To Layout Grid

View Layout Grid

Smart Align and Distribute
Align Distribute Tool ...

The function plotted below is f (x, y) = xe~(*"*¥°)

3=

1. Write the General expression for gradient and Hessian for the function
2. Evaluate hessian at the points given in the following figures

3. Find eigenvalues of those hessian matrices and decide the nature of curvature at the points

where it is evaluated. (curved upward, downward, neither)
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4. Read the blog post on hessian (pdf attached)

X406
Y:0.2
Z:-0.4022

| 0.5

0.5
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as
g
14 —
¥:0.35 |
-a Z:-0.1745 —
1 " -
05
g
a5
-1 T | T | T T T
-2 -15 -1 -05 0 05 1 15 Z
SOLUTION
1. Let the function be f(x,y) = xe"®*+".
The gradient of f(x, y) is given by:
of of )
\Y X, =55
f&y) ( 0x Oy
First, compute the partial derivatives. The partial derivative with respect to x is

g_f _ ai ( e—(x2+y2)) _ e—(x2+y2) rx- i (e—(x2+y2)]
X X
Since 2

2 2 2 2
= (e‘(x Y )) =-2xe”" V) we get:

g_f = e ) _2x2e" ) = (1-2x%) YD
X

Next, compute the partial derivative with respect to y:

%:%(xe—(x2+y2)):x,i(e—(x2+y2))

oy
Since % (e‘(x2+y2)) = —2ye” ™ *¥) we have:

of

= —2xye” V)
oy Y

Thus, the gradient is:
Vfilx,y) = ((1 - 2x2) e‘(x2+yz), _gxye-(x2+y2))

Now, compute the Hessian matrix, H(f), which consists of the second-order partial derivatives.
First, the second partial derivative with respect to x:

Pf 0

55 =5 ((1-2x%) e ) = :

5. (1-2%) e 4 (1-2x7)

aa (e7)
X
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The derivative of 1 —2x% with respect to x is —4x, and 6‘3—x (e‘(x2+y2)) = _2xe~ ™+ Thus:

62
a—]zc = _4xe Y _ 2x(1 - 2x2)e_(x2+y2) = _2x(3-2xY)e )
X

2
Next, the mixed partial derivative 0/ is:

oxdy
azf 0 2\ ,—(x*+y%) 2 —(x*+y%)
axay—a((l—Zx)e |=(1-2x%)- (-2y)e
Thus: )
0 f 2y —(x%2+y?
=-2y(1-2 ¥)
0x0y ¥ ¥e

Finally, the second partial derivative with respect to y is:

62f i(_zxye—(x2+y2))

0y~ dy =22 (e )

dy
The derivative of ye_(x2+y2) with respect to yis (1 — 2y2)e_(x2+y2), SO:

2

57 =21 -2)")e )
y

Thus, the Hessian matrix is:

—2x(3-2x2)e ) 2y - 2x2) e ¥+
H(f) = Y

—2y(1—2x2)e” Y _2x(1-2y2)e Y

2. The functional evaluation, gradient, Hessian and eigenvalues of Hessian matrix at the given
points are evaluated and shown in the following table.

(x,9) fo,» Vfx,y) H(f)(x,y) EV(H(f)(x,y)
(-0.6,0.2) | —0.4022 | (0.1877,0.1609) (_1)'.?)37‘;0 _()?'732%0) [0.7349,1.8391]
(0.6,—0.1) | 0.4144 | (0.1934,0.0829) (_(;(')288%8 _()(')(')gffg) [~1.8912,-0.8109]
(1.6,-0.7) | 0.0758 | (=0.1951,0.1061) (_0032271321 :8:(2)323) [-0.1585,0.4768]
(-1.4,0.35) | —0.1745 | (—0.3639,0.1221) (_0(‘);;170 g:gggj}) [—0.4164,0.3589]

11.2.2 Nature of critical points using eigen values of Hessian matrix

3. Nature of the points can be investigated using the nature of Hessian matrix at these points.
From the Taylor series approximation from multi-variable calculus the following results follows.

e The Hessian H f(a) is positive definite if and only if (Ax)TH fla)Ax > 0 for Ax # 0. Equiv-
alently, this is true if and only if all the eigenvalues of H f(a) are positive. Then no matter
which direction you move away from the critical point, the value of f(a+ Ax) grows (for
small |Ax]), so a is alocal minimum.

¢ Likewise, the Hessian H f(a) is negative definite if and only if (Ax)"H fla)Ax <0for Ax #
0. Equivalently, this is true if and only if all the eigenvalues of H f(a) are negative. Then
no matter which direction you move away from the critical point, the value of f(a + Ax)
grows (for small |Ax[), so ais a local maximum.
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* The Hessian H f(a) is indefinite if and only if it has at least one positive and at least one
negative eigenvalue. Then f(a+ Ax) either increases or decreases depending on the di-

rection you move away from the critical point so a is a saddle point.

 Finally, the test fails if we have a zero eigenvalue but the rest of the eigenvalues are either
all larger than or smaller than 0. In this case we need to use higher order terms to decide

if we have a saddle or local max/min.

Points EVH() (x,y) Nature Conclusion

(-0.6,0.2) | (0.739,1.839) | positive definite | local minimum
(0.6,-0.1) | (-1.189,-0.81) | negative definite | local maximum
(1.6,-0.7) (-0.158,0.47) indefinite saddle point
(-1.4,0.35) | (-0.416,0.358) indefinite saddle point

Table 11.1: Nature of z = f(x, y) at given points using eigen values of H(f)(x, )

Matlab code and output for this task is given below.

Syms x y;

% Define the function
f=x % exp(- (x72 + y°2));

% Compute the gradient
grad_f = gradient(f, [x, yl);

% Compute the Hessian
hess_f = hessian(f, [x, y1);

% Points to evaluate
points = [ -0.6, 0.2;

0.6, -0.1;
1.6, -0.7;
-1.4, 0.35 1;

% Preallocate arrays for results

f_vals = zeros(size(points, 1), 1);

grad_vals = zeros(size(points, 1), 2);

eigen_vals = zeros(size(points, 1), 2); 7% Store eigenvalues

% Evaluate at each point

for i = 1l:size(points, 1)
point = points(i, :);
f_vals(i) = double(subs(f, {x, y}, point));
grad_vals(i, :) = double(subs(grad_f, {x, y}, point));
hess_val = double(subs(hess_f, {x, y}, point));

% Calculate eigenvalues of the Hessian matrix
eigen_vals(i, :) = eig(hess_val);
end

Using this inter relationship between Calculus and algebra, we can decide the nature of z =
f(x,y) at the given points as follows.
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% Create a table to display results
result_table = table(points(:,1), points(:,2), f_vals,
grad_vals(:,1), grad_vals(:,2),
eigen_vals(:,1), eigen_vals(:,2),
'VariableNames', {'x', 'y', 'f(x,y)', 'Grad_x', 'Grad_y', 'Eige

% Display the table
disp(result_table);

b y f(x,y) Grad_x Grad_y Eigenvalue_1 Eigenvalue_2
-0.6 0.2 -0.40219 0.18769 0.16088 0.73491 1.8391
0.6 -0.1 0.41444 0.19341 0.082888 -1.8912 -0.81092
1.6 -0.7 0.075774 -0.19512 0.10608 -0.15854 0.4768
-1.4 0.35 -0.17447 -0.36389 0.12213 -0.41645 0.35887

Computational step to provide summary report of a more detailed analysis is given below.
syms X y;

% Define the function
f =x % exp(- (x72 + y°2));

% Compute the gradient
grad_f = gradient(f, [x, yl);

% Compute the Hessian
hess_f = hessian(f, [x, yl);

% Points to evaluate
points = [ -0.6, 0.2;

0.6, -0.1;
1.6, -0.7;
-1.4, 0.35 1;

% Preallocate arrays for results

f_vals = zeros(size(points, 1), 1);

grad_vals = zeros(size(points, 1), 2);

eigen_vals = zeros(size(points, 1), 2); ¥ Store eigenvalues

% Evaluate at each point

for i = 1l:size(points, 1)
point = points(i, :);
f_vals(i) = double(subs(f, {x, y}, point));
grad_vals(i, :) = double(subs(grad_f, {x, y}, point));
hess_val = double(subs(hess_f, {x, y}, point));

% Calculate eigenvalues of the Hessian matrix
eigen_vals(i, :) = eig(hess_val);

% Create a table for the Hessian matrix
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hessian_table = table(hess_val(l,1), hess_val(1,2),
hess_val(2,1), hess_val(2,2),
'VariableNames', {'Hess_11', 'Hess_12', 'Hess_21', 'Hess_22'});

% Display the results
fprintf ('At point (%.2f, %.2f):\n', point(1), point(2));
fprintf('f(x,y) = %.4f\n', f_vals(i));
fprintf('Gradient = [}.4f, %.4f]\n', grad_vals(i, 1), grad_vals(i, 2));
fprintf('Eigenvalues: [}.4f, %.4f]\n', eigen_vals(i, 1), eigen_vals(i, 2));
disp('Hessian Matrix:');
disp(hessian_table);
fprintf('\n');
end

At point (-0.60, 0.20):
f(x,y) = -0.4022
Gradient = [0.1877, 0.1609]
Eigenvalues: [0.7349, 1.8391]
Hessian Matrix:
Hess_11 Hess_12 Hess_21 Hess_22

1.834 -0.075076 -0.075076 0.74003
At point (0.60, -0.10):
f(x,y) = 0.4144
Gradient = [0.1934, 0.0829]
Eigenvalues: [-1.8912, -0.8109]
Hessian Matrix:
Hess_11 Hess_12 Hess_21 Hess_22

-1.8898 0.038681 0.038681 -0.8123
At point (1.60, -0.70):
f(x,y) = 0.0758
Gradient = [-0.1951, 0.1061]
Eigenvalues: [-0.1585, 0.4768]
Hessian Matrix:
Hess_11 Hess_12 Hess_21 Hess_22

0.32128 -0.27317 -0.27317 -0.003031
At point (-1.40, 0.35):
f(x,y) = -0.1745
Gradient = [-0.3639, 0.1221]
Eigenvalues: [-0.4164, 0.3589]
Hessian Matrix:
Hess_11 Hess_12 Hess_21 Hess_22

-0.32102 0.25472 0.25472 0.26344

RESULTS
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1. Role of linear algebra in multi-variate function optimization is revisited

2. Nature of the given function z = f(x, y) at the given points are investigated using Geometrical,
Calculus plus Linear Algebraic tools
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12 Assignment 44
Left and Right Eigenvectors

12.1 Relationship Between Eigen Values of A and AT

Eigen values of A and AT will be always same.
Quickly finding eigenvectors of 3x3 matrix using Gaussian Elimination

Al and Data-science heavily uses concept of eigenvalues and eigenvectors. Soon you will learn a
methodology called DMD (Dynamic Mode Decomposition ) for spatio-temporal data analytics. It is
very difficult to get a grip on it unless you master LA concepts.

1 3 1
21 3
3 2 2
Corresponding left eigenvectoris [11 1]’

Consider a matrix A = . One of its eigenvalue is 6 since all column sum is 6.

You can verify it as follows.

(111)

1 31
2 1 3]:6(111)ThatisyTA=/1yT
3 2 2

Let us find out corresponding right eigenvector.

1-6 3 1 X 0 5 -3 -1 x 0
2 1-6 3 yi=10|=|2 -5 3 y =10
3 2 2-6 z 0 3 2 -4 z 0

Last row become dependent on first two (this will always happen). Hence consider

e

Note now that x and y are pivotal variable and z is a free variable. From second equation, we obtain,

[1 35 -1/5 1| *

2 -5 3

Jo 1 -3/5 -1/5
Lo 0 -19/5 17/5

(19/5)y=(17/5)z
We take z=1 ( z is a free variable, it can take any non-zero value)
Choice of z will not affect the eigenvector direction.

This you should verify. You are holding a computer. Verify with it.




12. Assignment 44
Left and Right Eigenvectors

z=1=y=17/19

We use first row to find x value.

x=(3/5) +(1/5)z—3 17+1—70
h J 519 5 95
X 70/95

y |=| 17/19

z 1

Very important thing to note

1. Eigen values of A are same as eigenvalues of A”.
2. Corresponding to a given eigenvalue, Left eigenvector of A is same as right eigenvector of A”.
3. Right and left eigen vectors are different for a given eigenvalue (except for symmetric matrices)

Assignment

1. By hand calculation, find out the eigenvalues and right and left eigen vectors of following
matrices.

;note row sum is same

A:[e -2

SOLUTION For
this 2 x 2 matrix, the characteristic polynomial is

A% —trace(A)A+|A| =0

A2+1-20=0
A+5)A-4)=0

So the eigen values are (-5,4). The eigen vectors are the solutions of the equation (A—- AI)x = 0 for
each A. Using the shortcut method,
EV(A) = [’1 ; d]

we get
E (/1 = —5) =
V = =

EV(A=4)= H

Hence the right eigen values and their corresponding eigen vectors are:
the right eigen values of A are (—5,4)

REV(A=-5) = [_21]

REV(A=4)= [}]
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12. Assignment 44
Left and Right Eigenvectors

Similarly we can find the left eigen values and eigen vectors of A by finding eigen values and eigen

vectors of AT,

The left eigen values and their corresponding eigen vectors are:

the Left eigen values of A are (—5,4)

LEV(A=-5)= [

LEV(A=4)= [

Matlab code to verify these results are given below.

A=T1 3; 6 -21;

[EV,Eval]l=eig(A);
[EVL,EvalL]=eig(A');

disp('Right Eigen Values of A are:')

Right Eigen Values of A are:

disp(diag(Eval))

4
-5

disp('Right Eigen Vectors of A are:')

Right Eigen Vectors of A are:

disp (EV)
985/1393 -1292/2889
985/1393 2584/2889

disp('Left Eigen values of A are:')

Left Eigen values of A are:

disp(diag (Evall));

4
-5

disp("Left Eigen Vectors of A are:")

Left Eigen Vectors of A are:

disp (EVL)
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12. Assignment 44
Left and Right Eigenvectors

2584/2889 -985/1393
1292/2889 985/1393
2 3 .
B= [ , 1 |mote column sum is same

For this 2 x 2 matrix, the characteristic polynomial is
A? — trace(A)A + Al =0

A2 -31-4=0
A-—4)A+4) =0

So the eigen values are (4,—1). The eigen vectors are the solutions of the equation (A— AI)x = 0 for
each A. Using the shortcut method,
EVA) = [’1 ; d]

we get

EV(A=4)= [2]

-1

EVIA=-1)= [ 1

Hence the right eigen values and their corresponding eigen vectors are:
the right eigen values of A are (4,1)

REV(A=4) = B]
-1

1
Similarly we can find the left eigen values and eigen vectors of A by finding eigen values and eigen
vectors of AT,

The left eigen values and their corresponding eigen vectors are:
the Left eigen values of A are (4,—1)

REV(A=-1)=

LEV(A=4)= [ﬂ
-2
LEVA=-1)= [ 3 ]

Matlab code to verify these results are given below.

A1=[2 3; 2 11;

[EV,Eval]l=eig(Al);
[EVL,Evalll=eig(A1');

disp('Right Eigen Values of A are:')

Right Eigen Values of A are:
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12. Assignment 44
Left and Right Eigenvectors

disp(diag(Eval))

4
-1

disp('Right Eigen Vectors of A are:')

Right Eigen Vectors of A are:

disp (EV)
1189/1429 -985/1393
1369/2468 985/1393

disp('Left Eigen values of A are:')

Left Eigen values of A are:

disp(diag(Evall));

4
-1

disp("Left Eigen Vectors of A are:")

Left Eigen Vectors of A are:

disp (EVL)
985/1393 -1369/2468
985/1393 1189/1429

2. By hand calculation, find right and left eigenvector of following matrix corresponding eigenvalue
of 7
2 3 2
A=|1 3 3
3 2 2
The eigen vectors are the solutions of the equation (A — AI)x = 0 for each A.
So the LEV (A =7) is obtained by solving

-5x+y+3z=0
x—4y+3z=0

Using the componento-dividento;
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12. Assignment 44
Left and Right Eigenvectors

So the right eigen vector is
1
REVA=7)= |1
1
Similarly the left eigen vector for A = 7 is obtained by solving (AT —71) = 0.

LEV (A =7) is obtained by solving

-5x+y+3z=0
3x—-4y+2z=0

Using the componento-dividento;

Therefore the left eigen vector is

14
LEV(A=7)= (19
17
Matlab code to verify these results are given below.
A3=[2 3 2; 1 3 3; 3 2 2];
[EV,Eval]l=eig(A3);
[EVL ,EvallL]l=eig(A3');
disp('Right Eigen Values of A are:')
Right Eigen Values of A are:
disp(diag(Eval))
7 + 0i
-1/9297754069410056 + 1i
-1/9297754069410056 - 1i
disp('Right Eigen Vectors of A are:')
Right Eigen Vectors of A are:
disp (EV)
780/1351  + 0i -151/1664  + 1447/3357i -151/1664 - 1447/33571
780/1351  + 0i -491/941 - 478/1505i -491/941 + 478/1505i
780/1351  + 0i 2202/3347  + 0i 2202/3347  + 0i

disp('Left Eigen values of A are:')

Left Eigen values of A are:
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12. Assignment 44
Left and Right Eigenvectors

disp(diag (Evall));

7 + 01
-1/4969489243995030 + 1i
-1/4969489243995030 - 1i

disp("Left Eigen Vectors of A are:")

Left Eigen Vectors of A are:

disp (EVL)
941/1955 + 0i -985/1393 + 0i -985/1393  + 01
697/1067 + 01 1189/3363 + 1189/33631 1189/3363 - 1189/33631
941/1610 + 0i 1189/3363 - 1189/33631 1189/3363 + 1189/3363i
RESULTS

1. Concept of left and right eigen vectors of a matrix are revisited.
2. Relation between left and right eigen values and eigen vectors of A and AT are identified.

3. Left and right eigen vectors of given matrices are found and computationally verified.
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13 Assignment 45
Multivariate Regression

13.1 Data Generation for Multivariate Regression

13.1.1 Common origin of multivariate data

Multivariate data contains, at each sample point, multiple scalar values that represent different simu-
lated or measured quantities. Multivariate data can come from numerical simulations that calculate
a list of quantities at each time step, or from medical scanning modalities such as MRI, which can
measure a variety of tissue characteristics, or from a combination of different scanning modalities,
such as MRI, CT, and PET.

13.1.2 General form of multivariable function

For univariate regression problem of the form y = mx + ¢ , we assumed m and c and computed y
for a range of x and added error. Now our problem is , we want to create data for multivariate linear
regression (MLR). Equation is of the form

y=mix1+myxo+mszxg+---+myxX,+c+e€

13.1.3 Popularity of MLR

Many problems can be formulated as regression problem. A dependent variable is rarely explained
by only one variable. In such cases, an analyst uses multiple regression, which attempts to explain a
dependent variable using more than one independent variable. The model, however, assumes that
there are no major correlations between the independent variables. Some popular examples are listed
below.

1. Digital Filter design can be casted as MLR
2. Pattern classification problem can be casted as Multiple output MLR

3. Neural Network training is basically estimation of MNLR-multivariate non-linear regression

13.1.4 A Synthetic data generation for MLR

Like in single variable case, we will assume values for the coefficients m;, my, ..., m,, c and compute
Y for various combination of x1, x»,..., x, values. Finally we add noise from some probability distri-
bution.

For univariate regression problem of the form y = mx+ ¢ + error , we assumed m and ¢ and
computed y for a range of x and added error. We could create data in matlab without any loop and
re-estimate the parameters.

This was how it was done .




13. Assignment 45
Multivariate Regression

X=(-5:5)"';

n=length (X);

YO=5%xX+6 ;

Y=Y0+3*randn(n,1) ;

A= [X ones(n,1)] ; Coeff = pinv(A)=*Y;
Ys=A*Coeff;

plot (X,Y,'*")

hold on

plot (X,Ys)

Now our problem is , we want to create data for multivariate linear regression (MLR).
Equation is of the form Y = m; X1+mp Xo+.....+m, X,+C+e

Finally we add noise from some probability distribution.

Let us take up one at a time.

Problem 1

How shall we generate N say (10000), n-tuple (say 8-tuple) values for X; X»,.....,X,, Here we have
many choices , important ones are

X1,X5,.....X,, are independent and follow some distribution
X1,Xo,.....X, dependent and follow a multivariate normal distribution

So, code can be

X=rand (10000,8)
X=mvnrnd (mu, sigma, 10000)
X=[X ones(10000,1)]

Problem 2

How shall we compute Y = m; X;+mp Xo+.....+my, X, +C without loop for above N combination of
X1,Xo,..... X, values.

First we assume values for m; my,.....,m,,C and put it as a row matrix, say

Re=[ 1 2 3 4 5 4 7 3 10]; \/J n=8, C=10

We use repmat command to duplicate the values to the size of X matrix. This will allow us to
compute Y in one step for all N(=10000) data points.

Mx=repmat (Rc,10000,1) ;

Problem 3

Adding noise to Y
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13. Assignment 45
Multivariate Regression

Y=Y+sigma*randn (10000,1)

Final Re-estimation problem

m = pinv(X)*Y

Final matlab code

N=1000;

n=_8;

Rc=[ 1 2 3 4 5 4 6 3 100];
X=randn(N,n) ;

X=[X ones(N,1)];
Mx=repmat (Rc,N,1);
Y=sum (Mx.*xX, 2);
sigma=10;
Y=Y+sigma*randn(N,1);
Rc\_esti=pinv (X)*Y;
Yesti=X* Rc\_esti;

Assignment Question 1

Generate multivariate data using above code and report the following

SOLUTION

N=1000;

n=_8;

Re=[ 1 2 3 4 5 4 6 3 100];
X=randn(N,n) ;

X=[X ones(N,1)];
Mx=repmat (Rc,N,1) ;
Y=sum (Mx.*xX, 2);
sigma=10;
Y=Y+sigma*randn(N,1);
Rc_esti=pinv(X)*Y;
Yesti=X* Rc_esti;

¢ Plot of the percentage deviation of the coefficient

SOLUTION

Matlab code for this task is given below.

percentage_deviation = ((Rc_esti - Rc') ./ Rc') * 100;
figure;

bar (percentage_deviation) ;

xlabel ('Coefficient Index');

ylabel ('Percentage Deviation (%) ');

title('Percentage Deviation of Estimated Regression Coefficients');
grid on;
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13. Assignment 45
Multivariate Regression

Output of the code is shown in Figure 13.1.

Per Deviation of Reg ion Coefficients
T T T T T T T T

Percentage Deviation (%)

-30

I I I I I I I I I
1 2 3 4 5 6 7 8 9
Coefficient Index

Figure 13.1: Percentage deviation of estimated regression coefficients

» geterror vector e = Y-Yesti and check whether is orthogonal to all columns of X. If yes what
is the reason?.

SOLUTION

code for checking orthogonality is given below. If dot product is zero, then the vectors are orthogonal.

Matlab

e =Y - Yesti;

orthogonality_check = X' * e;

disp('Dot product of error vector with each column of X:');
disp(orthogonality_check);

Output of the orthogonality check is shown below.
1.0e-10 %

0.2323
-0.2389
-0.0193
-0.1864

0.0364

0.0324
-0.5446
-0.3351

0.1290

Since, the dot product is very small and while rounding it become zero. So the error vector is orthog-
onal to each columns of X.

Following matlab code check this and display the result.

if all(abs(orthogonality_check) < 1e-10)

disp('The error vector is orthogonal to all columns of X.');
else

disp('The error vector is not orthogonal to all columns of X.')

end

In this context, the result is:
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13. Assignment 45
Multivariate Regression

The error vector is orthogonal to all columns of X.

¢ compute sum(e) and check whether it is close to zero or not

SOLUTION
Matlab code for this task is given below.

sum_e = sum(e);
disp('Sum of the error vector:');
disp(sum_e) ;

Output of the code is shown below.

Sum of the error vector:
1.3031e-11

Following code will check whether the sum of error is zero or not.

if abs(sum_e) < le-10

disp('The sum of the error vector is very close to zero.');
else

disp('The sum of the error vector is not close to zero.');
end

Output of the code in this context is given below.

The sum of the error vector is very close to zero.

* explain why sum(e) need to be zero
SOLUTION

In OLS regression, the goal is to find the best-fit line (or hyperplane) that minimizes the sum of
squared differences between the observed data points Y and the predicted values Y,;;. The least
squares solution ensures that the residuals are distributed such that their sum is minimized. This
balancing of positive and negative residuals naturally results in the sum of the residuals being
approximately zero.

Assignment Question 2

Generate data for single variable nonlinear regression equation of the form
y=ap+a;x+ arx*+....+a,x" + € for n=5 and re-estimate the coefficients using the same
methodology . Assume x varies in the range -5 to 5

SOLUTION
Matlab code for this task is given below.

N = 1000;

range [-5, 5]

x = 10 * rand(N,1) - 5;

a_true = [1, -2, 3, -1, 0.5, 2];

X = [ones(N,1), x, x.72, x.°3, x.74, x."5];
epsilon = 0.5 * randn(N, 1);

y = X * a_true' + epsilon;
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Multivariate Regression

a_estimated = pinv(X) * y;
disp('True coefficients:');
disp(a_true');
disp('Estimated coefficients:');
disp(a_estimated) ;
y_estimated = X * a_estimated;
e =y - y_estimated;
orthogonality_check = X' * e;
disp('Dot product of error vector with each column of X:');
disp(orthogonality_check) ;
sum_e = sum(e);
disp('Sum of the error vector:');
disp(sum_e);
if abs(sum_e) < le-10
disp('The sum of the error vector is very close to zero.');
else
disp('The sum of the error vector is not close to zero.');
end

Output of the code is given below.

True coefficients:
1.0000
-2.0000
3.0000
-1.0000
0.5000
2.0000
Estimated coefficients:
1.0256
-1.9503
2.9966
-1.0097
0.5001
2.0004
Dot product of error vector with each column of X:
1.0e-06 =*

-0.0001
.0012
.0006
.0201
.0188
.3949

O O O O O

Sum of the error vector:
-5.8134e-11

The sum of the error vector is very close to zero.

Following code will plot the true and estimated coefficients of the regression model.

figure;
bar([a_true' a_estimated]);
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Multivariate Regression

True vs Esti d Coefficients

T T T T
[ True Coefficients
251 I Estimated Coefficients |

Coefficient Value

. . . . .
1 2 3 4 5 6
Coefficient Index

Figure 13.2: Comparison of predicted coefficents with true coefficients.

legend ('True Coefficients', 'Estimated Coefficients');
xlabel ('Coefficient Index');

ylabel ('Coefficient Value');

title('True vs Estimated Coefficients');

grid on;

Output of the code is shown in Figure 13.2.
Following code will demonstrate the skill of the model.

x_smooth = linspace(-5, 5, 1000)"';

X_smooth = [ones(length(x_smooth), 1), x_smooth, x_smooth."2,
x_smooth.~3, x_smooth." 4, x_smooth."5];

y_smooth = X_smooth * a_estimated;

figure;

scatter(x, y, 10, 'b', 'filled');

plot (x_smooth, y_smooth, 'r', 'LineWidth', 2);

title('Scatter Plot of Actual Points and Fitted Polynomial Curve');
xlabel('x');

ylabel('y');

legend ('Actual Data Points', 'Fitted Polynomial Curve');

grid on;

hold off;

Output of the above code is shown in Figure 13.3.
Assignment Question 3
Formulate the multivariate regression problem as

1. Linear algebra problem
SOLUTION
In multivariate linear regression, the model can be written as:
y=Xw+e€

where:
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8000 - Scatter Plot of Actual Points and Fitted Polynomial Curve

®  Actual Data Points
Fitted Polynomial Curve

6000

4000

2000

ok

-2000-

-4000

-6000
-5

Figure 13.3: Skill of the polynomial regression.

o X e RN*"*1) j5 the input matrix with N data points and 7 + 1 features (including a column
of ones for the intercept),

e we R"D is the vector of regression coefficients,
« ye R" is the vector of observed outputs,
o e e RV is the vector of errors (noise).

To estimate w, we solve the least-squares problem by minimizing the residuals between the
observed values y and the predicted values Xw. This leads to the normal equations:
X' Xw=X"y

The solution to these normal equations is:

w=(X"X)"'XTy

This is the closed-form solution for the least-squares estimate of w, provided that X' X is invert-
ible.
2. Optimization problem

SOLUTION

In the optimization formulation, we aim to minimize the sum of squared errors between the
observed outputs y and the predicted outputs Xw. The objective function to minimize is:

J(w) =

DN =

N T2
Z (yi_xi W)
i=1

In matrix form, this can be written as:

1 2
J(w) = Elly—XWIlz

where || - ||§ is the squared L, norm, i.e., the sum of squared residuals.

13.1.5 Gradient of the Objective Function

The gradient of the objective function with respect to w is given by:

Viw) = X' (y—Xw)
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13.1.6 Gradient Descent

To minimize J(w), we can use the gradient descent algorithm, where the weights w are updated
iteratively as follows:
Whew = W — UV](W)

Here, 1 is the learning rate, controlling the step size in the gradient descent algorithm. The
iteration continues until the gradient is sufficiently small, indicating that the algorithm has
converged.

RESULTS

1. Various methods of simulating data for multivariable regression is revisited
2. Percentage error for coefficient estimate is calculated and visually interpreted.

3. Multiple linear regression problem is modelled as both a linear algebra model (that provide a
closed form solution) and an optimization model (that provide an approximate solution itera-
tively).
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14 Assignment 46
Orthogonal Basis for Signal Process-
ing

14.1 Linear Algebra for Signal Processing

What is Digital signal processing? What is the importance of the linear algebraic concept of ‘Bases’ in
Digital signal processing.

For the purpose of defining usual signal that people have in mind, we limit our context. We define
digital signal as sequence (time or space coordinate indexed or both) of numbers that carry some
information. Mathematically, it is a function.

The ‘information’ here is the pattern.

14.1.1 Asimple example

Our ECG waveform has a generic pattern. Given an ECG waveform, how far it is away from the
expected pattern is information for the doctor.

To quantify and characterize information digitally, we use the concept of bases.

14.1.2 Common basis for signal processing

We express the digital signal ( a function, now a vector) in terms of linear combination of other
functions(vectors) selected and fixed in advance.

Commonly used bases are

1. Fourier bases (sines and cosines with integer wave numbers but of same length/duration )
2. Cosine bases (cosines of same length and with integer multiple of half-wave numbers )

3. Walsh Hadamard bases

4. Wavelet bases.

These base elements (vectors) are created to be orthogonal for computational reasons.

Linear independence and completeness (basis set should span entire signal space) is the criteria to
be met by the basis set.

Choice of basis set depends on applications.

Once a signal is expressed in terms of some standard basis set, we can talk about the nature of the
signal in terms of the magnitude of the coefficients of each base elements.

For example if
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1
y =10%| © |+2%| T |+(G-D*| T | +3*
3
signals basel  base2 base3  base4
—— —— —— —— ——

we say the first component(base) is more in the signal,

We can further process the signal by modifying these coefficients and re-constructing the signal with
the modified coefficients.

Suppose we are interested in analyzing a n- tuple signal.
Following matlab codes give basis set as columns of a matrix.
(For getting basis vectors in columns use inverse transform of identity matrix.
For getting basis vectors in rows use forward transform of identity matrix.)
We take n=4

1. B=idst(eye(n))

0.2351 0.3804 0.3804 0.2351
0.3804 0.2351 -0.2351 -0.3804

B= 0.3804 -0.2351 -0.2351 0.3804
0.2351 -0.3804 0.3804 —0.2351
2. B=idct(eye(n))
0.5000 0.6533 0.5000 0.2706
B= 0.5000 0.2706 0.5000 -0.6533

0.5000 -0.2706 0.5000 0.6533
0.5000 -0.6533 0.5000 -0.2706

3. Walsh Hadamard bases

0.5 05 05 0.5
0.5 -0.5 0.5 -0.5
0.5 0.5 -0.5 -0.5
0.5 -0.5 -0.5 -0.5

4. Complex Fourier bases

B=1/sqrt(n)*(fft(eye(4)))’
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1.00 1.00 1.00 1.00
1.00 1.00 1i -1i
1.00 -1.00 1.00 -1.00
1.00 0.00 -1i 1i

5. Wavelet bases

1 1
z 0 5 0
L o =L o
B= V2 V2
o L o L
V2 V2
o L o =L
V2 V2

In addition to this, we can split signal based on other criteria.
Assignment Question
Express vector [1 2 -2 3]’ using above five basis set vectors.

Answer should look like

=coeflx| *~ | +coef2x+ | * | +coef3x| |+

o
o
»n
[¢°]
p—
o
V]
» -
(¢
\S}
o
V]
»
(¢}
w

coef4x

:

base4
——

SOLUTION

The task can be represented as follows. Let v be the vector in R*. For a given basis, B = {b, b2, b3, by}

the vector v can be written as:

UT =c1b1+ caby + c3bs + cyby
CB
C= B*l UT

Matlab code and its output for this task is given below.
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n=4;

v=[1 2 -2 3];

Bi=idst (eye(n));

B2=idct (eye(n));

B3=[0.5 0.5 0.5 0.5; 0.5 -0.5 0.5 -0.5; 0.5 0.5 -0.5 -0.5; 0.5 -0.5
-0.5 -0.5];

B4=1/sqrt (n)*(fft (eye(n))) ';

B5=1/sqrt(2)*[1 0 1 0; 1 0 -1 0;0 1 0 1; 0 1 O -11;

Cl=pinv(Bl)*v';

C2=pinv(B2)*v';

C3=pinv(B3)*v';

C4=pinv (B4)*v';

Co=pinv(BB)*v';

disp("The vector v=c_1b_1+c_2b_2+c_3b_3");

disp("The coefficients c_1,c_2,and c_3 is given for each Basis is

given below:");

disp(Coefficients for Basis 1:);

disp(C1');

disp("Coefficients for Basis 2:");

disp(C2');

disp("Coefficients for Basis 3:");

disp(C3');

disp("Coefficients for Basis 4:");

disp(C4');

disp("Coefficients for Basis 5:");

disp(C5');

The vector v=c_1b_1+c_2b_2+c_3b_3

The coefficients c_1,c_2,and c_3 is given for each Basis is given below:
Coefficients for Basis 1:
2.3511 0.4490 3.8042 -4.9798
Coefficients for Basis 2:
2.0000 -0.2242 2.0000 -3.1543
Coefficients for Basis 3:
4.0000 -5.0000 -1.0000 4.0000
Coefficients for Basis 4:
2.0000 + 0.00001 1.5000 - 0.5000i -3.0000 - 0.00001 1.5000 + 0.50001
Coefficients for Basis b:
2.1213 0.7071 -0.7071 -3.5355

RESULTS
1. Importance of linear algebra in Signal Processing is revisited.

2. Common basis for signal processing is revisited.

3. Agiven vector (signal) is represented in terms of basis vectors for each basis set.
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15.1 Solution of Ax = b using Linear Algebra and Calculus

15.1.1 Two approaches but the same solution!

For millions of computer science people aspiring to become Al and data scientists, one of the
stumbling block is optimization theory based on lagrangian multipliers. Kernel methods (SVM, SVR,
Kernel PCA, Kernel CCA, Kernel ICA, Kernel DMD etc) and Modern control theory heavily depends
on it. In fact entire convex optimization theory is built over concepts like lagrangian function and
lagrangian duality. Ignorance of this techniques make you weep when you read latest papers on Al
and Data Science. So better confront it at the earliest.

Problem 1.
X1+2x2=6.What is the least norm solution.

LA solution
[12] [ ] =6—Ax=Db

€ R? With respect to matrix A =[1 2] [ € R? has two orthogonal components. One in

X1
X2

Rowspace and the other in Right nullspace .

| |
=XR+ XN
| |

X1
X2

|
So,{c=

A(xg+ xn) = b= xp provides least norm solution since Axg =b & Axy =0

Xp is rowspace component and so xp is linear combination of rows. So let

1

;CER
2(:

XR=C

Axp=b=c[12] [ ; ]:6:>c:6/5

1 6/5
_§ = =0.; * —
5[ ] [ 12/5 ]-CheCkasz 6;6/5+2%12/5=6
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Solution with lagrangian multiplier method.

The problem can be formulated as:

arg min X124x02

Subjected to x;+2x,=6

This means which point on the given line has least square-norm.
Forming lagrangian f unction, we obtain

L A) = X124 %22 - A(x] +2x, — 6)

: oL _
Equation 3=

0
0 ]& % =0, we obtain

a_L_ 2x1 ) 1 _ 0 - X1 _& 1 _ 6/5
ox | 2x 2110 X2 | 212 | 12/5
a|_f 675 is require solution vector
x || 12/5 9

Check x;+2x,=6;6 /5+2*12/5=6

Problem 2. More than one equality constraints in higher dimension
In matrix form, the problem can be formulated as:
v Ty _ . 2
argminX " X = arg min||x||;
X X
subject to Ax = b.
This means which point x that satisfy Ax = b has least square-norm.

The problem in three variables and two constraints look like this,

LA solution. For the least norm, x has to be in row space. We assume rows of A are independent.
So let,

x = ATy =linear combination of columns of AT = linear combination of columns of A

Ax=b=>
ATy=b=y= (AAT)_lb

x*=ATy=AaT(AAT) b
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If Rows of A are dependent, we resort to pinv.

x* =pinv(A) * b
You may check that x* = pinv (A) * b also give same solution.

Optimization method

L(x, 1) =L(x,A1,A2) = (x5, %5, x5) — 1 (361+2x2+3x3 - 3) -2 (4361+x2+2x3 - 4)

= X1 1 4 14
g—)g =2l [~ 2 -2 1 |=2x-]2 1 [Al]:ZX—AT/l
oL 2
I X3 3 2 3 2
0 1 4
oL 1 A A
. 0 3 2 2
1
A
2 +72 1
3
x*=linear combination of columns of A
oL
o = X142x,43,, —3=0 &6—M= 4X14x42,, —4=0=
X1
1 2 3 3] [0 .
(123 [m]_h]_[o]m_b
X3
On substitution Ax* =%AAT)L =b
A=2(AAT) b

x* = %ATA = %AT «2(AAT) 'b= AT(AAT) b

Generic solution

T

min x* x

s.tAx=b;
L(x,A) = xlx-AT (Ax— b);note A is a vector

oL 1
Fri 2x-ATA=0=>x" = EATA = solution vector is in row — space

L
6—=(Ax—b):0$Ax*=b

oA
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above two equations imply

x*=AT(AAT) b

Solution assumes Rows of A are independent.
Assignment Questions

1 Find least norm solution to x+ 2y +4z =10

SOLUTION
We want to find the least norm solution to the equation:

x+2y+4z=10
This can be represented in matrix form as:
Ax=Db
where
X
A=[1 2 4], x=|y|, b=][10]
z

The least norm solution is given by the formula:
x=ATAA") b

Calculating AAT:

1
AAT=[1 2 4]|2|=21
4
Now calculate AT(AAT) 1p:

ATaAD b= [2]217110= | =

21
The solution vector x can be represented as:
10
*1 |5
X = J/ = | —
2] |4
21
Matlab code for this task and its output are shown below.
A= [1; 2; 4],
b = [10];
v_least_norm_method2 = (A * inv(A' * A)*x b);
disp('The least norm solution using A"T(AA"T)"(-1)b is:');
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The least norm solution using A“T(AA"T)~(-1)b is:

disp(v_least_norm_method2);

10/21
20/21
40/21

Consistency of the result is verified with the x=pinv () *b method as shown below.

A =11 2 4];
b = 10;
v_least_norm = pinv(A) * b;

disp('The least norm solution [x, y, z] is:');

The least norm solution [x, y, z] is:

disp(v_least_norm);

10/21
20/21
40/21

2 Find least norm solution to x +2y +4z = 10&4x+3y +3z =20

SOLUTION
We seek the least-norm solution to the system:

x+2y+4z=10

4x+3y+3z=20

The system can be expressed in matrix form as:

where

The least-norm solution is given by:
x=A"(AAT)'b

First, compute AT, the transpose of matrix A:

1 4
AT=]2 3
4 3

Next, calculate AAT:

1 4
1 2 4 21 22
T _ _
44 ‘( ) i 3 ‘(22 34)
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The inverse of AAT is:

(AAT)_l —

1 (34 —22)
230

=22 21

We now compute AT (AAT)~1:

1 4 -54 62
1 4 =22 1
AT(AAT)‘I:ﬁ 2 3 (_‘9’22 21):% 2 19
4 3 70 =25
Finally, multiplying by b:
70
-54 62 700
1 1
70 -25 200/ | %3
23

Thus, the least-norm solution is:
x=3.04347, y=1.7391, z=0.8695

Matlab code for this task and its output is given below.

A=[1 2 4; 4 3 3];

b=[10;20];

x=A'*inv (A*A"')*Db;

x_i=pinv (A)*b;

disp("The least norm solution is:");

The least norm solution is:

disp(x)

70/23
40/23
20/23

disp("Solution using pseudo inverse:");

Solution using pseudo inverse:

disp(x_1i)

70/23
40/23
20/23

if (x==x_1<1.010-12)
disp("Both least norm solution and Pseudo inverse solution are
equal")
else
disp("The least norm solution and Pseudo inverse solution are
different™")
end
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Both least norm solution and Pseudo inverse solution are equal

Solution using Lagrange multiplier approach is given below. We can also solve this system using
Lagrange multiplier method. In this method the problem is converted as a minimization problem

as steted below.

Minimize the Euclidean norm [v[|? = x? + y? + 2%, subject to the constraints, Ax = b. We define the

Lagrange function as:

L(x,¥,2,A1,42) =x2+y2+z2—/11(x+2y+4z—10)—12(4x+3y+3z—20)

The critical points are found by equating the first order partial derivatives with respect to x, y,z and 1

into zero.

Taking the partial derivatives of £ with respect to x, y, and z, and setting them equal to zero gives:

0Z
0x
0¥
—=2y-211-34,=0 4
5y =23k (4)
0 o 4d-3,=0 ()
0z

Solve for x, y, and z From equation (3):

A +4A
2
From equation (4):
_ 211 + 3/12 7
YT
From equation (5):
4&1 + 3/12
= ®

Substituting (6), (7), and (8) into the constraints (1) and (2) and simplifying leads to a system of equa-

tions that can be solved for 1; and A,.
After substitution and simplification, we find:
20 40

AM=— Ap=—
17793 ™27 53

Now compute x, y, and z Substituting A1, and A, into equations (6), (7), and (8):

A +4A; _%4'4'% 70
X = = =

2 2 23
20431, 2--53+3-3 40
Y= T 2 23
401 +31, 4--2+3-33 20
<= = = —
2 2 23
Thus, the Lagrangian solution is:

X 70

i

YI =123

5

o 23

3. Find Nearest point on x + 3y +4z = 10 from origin (0,0,0)
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SOLUTION

We need to minimize the distance from the origin to a point p = (x, y, z) on the plane. The distance is

given by the norm:
dp) = lpll=y/x*+y*+2?

x+3y+4z=10

subject to the constraint:

We can solve this minimization problem using the method of Lagrange multipliers. The objective
function to minimize is:
f(x,y,2) :x2+y2+z2

and the constraint is:
g(x,y,2)=x+3y+4z-10=0

The Lagrangian is:
Lxy o) =x2+ Y+ 22 + A(x+ 3y +4z—10)

Taking partial derivatives of £ with respect to x, y, z, and A, and setting them to zero:

0L A
—=2x+A=0 > x=-——
0x 2
_2y431=0 = y=-2
ay y B y= 2
0%
— =2z4+4A=0 = z=-21
0z
0L i +3y+42-10=0
L =x+3y+4z =

Substitute the expressions for x, y, and z into the constraint equation:

A 31
-2 43 (——) +4(-21) =10

2 2
Simplifying:
A 91
-————-81=10
2 2

1014
- (— + 8/1) =10
2
10
-51-81=10 = -13A=10 = )L:_E
Now substitute A = —% into the expressions for x, y, and z:
-10 5 _3(-10) 15 10 20

’

= y = = —, z= X —— _
2x13 13 2x13 13 13 13
Thus, the nearest point to the origin on the plane is:

5 15 20)

Pnearest = (E’ E» E

The same problem can be solved using projection of (0,0, 0) into the plane through the normal line.
Matlab code for this task and its output are shown below.
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format rational

n = [1; 3; 4];

do = 10

PO = [0; 0; O

P_nearest = PO - (dot(m, PO) - d0) / (morm(n)~2) * n;

disp('The nearest point on the plane x + 3y + 4z = 10 from (0,0,0)
is:');

disp(P_nearest);

The nearest point on the plane x + 3y + 4z = 10 from (0,0,0) is:
5/13
15/13
20/13

1. Find Projection of (1, 2, 8) on to set of points defined by x + 3y + 4z = 10.

SOLUTION
We aim to find the projection of the point P(1,2,8) onto the plane defined by the equation:

g(x,y,2)=x+3y+4z-10=0
We want to minimize the distance from the point P to a point (x, y,z) on the plane. The squared

distance is given by:
fx,y,2)=x-1>+(y-2)%+(z-8)°

We set up the Lagrangian function:
Ly =x-1D*+y-2°%+(2z-8%+A(x+3y+4z-10)

Now Compute the Partial Derivatives Taking the partial derivatives and setting them to zero gives:
4
—=2(x-1D+A=0 (1)
0x
Z =2(y—-2)+31=0 (2)
o0y =Y B
0Z
— =2(z—-8)+41=0 (3)
0z

aﬁ—x+3 +4z-10=0 4)
or T -

From equation (1):

A
x=1-——
2
From equation (2):
_y 31
YT
From equation (3):
z=8-21
Using these values in (4),
A= 29 (5)
13
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Substituting (5) in x, y and z, we get

29 -3
x=1- =
2x13 26
. 3x29 _-35
7 2x13 26
29 46
z=8-2— =—
13 13

The projection of the point (1,2,8) onto the plane x+3y +4z =10 s:

( 3 35 46)
26" 26’13

Matlab code and its output for the same task but in projection method is shown below.

n = [1; 3; 4];

do = 10;

PO = [1; 2; 8];

P_nearest = PO - (dot(n, PO) - d0) / (norm(m)~2) * n;
disp('The projection of (1,2,8)in to x+3y+4z=10 is:');
disp(P_nearest);

The nearest point on the plane x + 3y + 4z = 10 from (1,2,8) is:

-3/26
-35/26
46/13
s ™ 3
1. Solve 1 2 X | = [ 4 Use both LA and optimization approach
X3
SOLUTION

1. LA approach
Consider the system of equations represented as Ax = b, where:

A

First, compute the transpose of A:

1 4]
AT=|2 1
3
Next, calculate AAT:
1 4
AAT = 123][21_[14 12]
4 1 2 T 12 21
3 2

The least norm solution can be found using the formula:
x=A"AAD) b

To find (AAT)™!
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_2
25 75
Then: 13
1 4 —
x=|2 1 52
3 2 -
75
Calculate this gives:
- 7 -
150
_| =z
X=115
101
L 150
The least norm solution is: I
150
_| =z
X=1715
101
150

2. Lagrange Multiplier Method:

We aim to solve the system Ax = b using the Lagrange multiplier method, where:

1 2 3 3
A‘[4 1 2}’ b= 2]

The objective function is to minimize the norm:

2_.2,.2,.2
) =1lx]®=x7 + x5+ x3

The constraints derived from the system are:
g1(x) =1x1+2x,+3x3—-3=0 (1)
gX)=4x1+1x2+2x3-2=0 (2)
The Lagrangian is defined as:

ZL(x1,%x2,x3,A1,A2) = x%+x§ +x§—11(1x1 +2x3+3x3—3)—Ao(dx; +1x2+2x3—2)

Taking the partial derivatives:

1. With respect to x;:

0%
—=2x1—-A1—-41,=0 (3)
0x1

2. With respect to xy:

0L
- =2.X'2—2/11 —Az =0 4
dxz

3. With respect to x3:

0%
- 22)(,‘3—3/11 —2&2 =0 (5
GX3

From equations (3), (4), and (5): 1. From (3):

_ /11 +4/12

> (6)

X1
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2. From (4):
201 + Ao
Xp=—r— (1)
2
3. From (5):
301 +2A,
X3 = — (8)

Substituting equations (6), (7), and (8) into constraints (1) and (2):
Substituting into (1):

A +4A1 201+ A
L 2+2( L 2 +3

(3/11+2A2) —3

2 2
Simplifying gives:
/11 +4/12 +4Al +2/12 +9/11 +612 _3
2
1411 + 12/12 -3
2

140, +124, =6 (9)

Substituting into (2):

A +4A 201+ A 311 +24
4( 1 2)+1( 1 2)+2( 1 2)=2

2 2
This simplifies to:
4/11 + 1612 + 2/11 + /12 + 6/11 +412 —n
5 =
12&1 + 21/12 —9
> =

1241 +211, =4 (10)
Now we solve the system of equations (9) and (10): 1. From (9):
1421 +121, =6

2. From (10):
12&1 +21/12 =4

Multiply the first equation by 3 and the second by 2:
4211 +361, =18
2410, +421, =8

Subtracting these gives:
(24-42)A1 +(42-36)A, =8-18
—1811 + 6/12 =-10

312-91;=-5 (11)

Now express Ay in terms of 1;:

5
A2=3/11—§

Substituting into (9):
5
141, +12 (3&1 — §) =6

1417 +361,-20=6
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501, = 26
13
A =—
25
Now find A;,:
13 5 8
Ap=3|—=|-=-=——
25 3 75
Now compute X1, X2, X3 using equations (6), (7), and (8), substitute the values of 1; and 1, to
find: 8 8 8
13,,°° 13y, ~° 13 -
25+475 7 2(3)+ -5 7 3(25)+275 101
xl:—:_r x2:—:—, x?):—:_
2 150 2 15 2 150
Thus, the solution x can be computed explicitly.
The final values are given by:
r 7 ~
x1 150
x=|x|= !
2 15
x| |0
L 150

Matlab code for this task is given below.

A=[1 2 3; 4 1 2];

b=[3;2];

x=pinv (A) *b;

disp("Solution of the system is:");
disp(x);

Output of the code is shown below.

Solution of the system is:
7/150
7/15
101/150

Both analytical and computational approaches give the same result!
Hint(x; — 1)% + (x2 — 2)2+(x3 - 8)2;subject toAx=»b
Or min (x—c¢) T(x — c);subject to Ax = b where ¢ = (128) r

5. Find solution to x” (AT A) x; subject to xTx =1

SOLUTION
To find the solution to the problem

minimize x” (AT A)x subjectto xTx =1,

we can use the method of Lagrange multipliers.
The Lagrangian function is given by:

LN =xTATAx-A2xTx-1),

where A is the Lagrange multiplier.
To find the extrema, we need to compute the gradient of £ and set it to zero:

Amrita School of Artificial Intelligence 129



15. Assignment 47
Lagrangian Multipliers

V& =2ATAx-2Ax=0.

This can be rearranged to:

AT Ax = Ax.

The equation AT Ax = Ax suggests that x is an eigenvector of the matrix AT A, and A is the corre-
sponding eigenvalue.

To minimize x? (AT A)x under the constraint x” x = 1, we are looking for the smallest eigenvalue of
the matrix A’ A, along with its corresponding eigenvector.

The solution to the problem is to find the eigenvalues and eigenvectors of AT A:

The minimum value of x” (AT A)x subject to x”x = 1 occurs at the eigenvector associated with the
smallest eigenvalue of AT A. - The constraint xx” = 1 forces x to lie on the unit sphere in the feature
space.

This is used in the derivation of SVD. Can you give geometrical interpretation to this problem,
assuming rows of A are data points scattered around origin.

SOLUTION

This problem provides a way to understand the geometric distribution of data points and their inher-
ent structure. By seeking the direction that minimizes the spread of data, we can uncover important
characteristics about the data’s arrangement in the space, which is crucial for dimensionality reduc-
tion techniques such as PCA and SVD. If the data points are tightly clustered around the origin, the
direction of least variance (as found by this minimization) will point toward a direction where the
points are closest to each other.

RESULTS

1. Solution of linear system is viewed in both algebraic and optimization approaches. It is found
that, for large system of linear equations the least norm approach of Linear Algebra is more
handy compared to Lagrange Multiplier method.

2. Given problems were solved in LA approach and optimization approach.

T

3. General constrained minimization problem xT(AAT)x where x* x = 1 is reformulated as an

eigen value problem that leads to the SVD.
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plications

Root of a square matrix and one of it’s application

Let A be n x n square matrix with distinct eigen values. Then by spectral decomposition
A=SAS'. Let B=SAY2S L. Then B? = (SAY2871)SAl/28 1 =sAS7 =4

This means B = VA

Al - 0 £/ - 0

Here A= | : .. : [;--Al2= : . :
0 ... Ay 0 e 2V,

We have in general 2”solutions for B .

= A2 is not unique

Generating multivariate Gaussian Random variable
How mvnrnd function in matlab works.

mvnrand () function is used for generating multivariate random variables with given mean vector
and covariance matrix . Internally it generate random numbers from i.i.d (identically and
independently distributed) standard Gaussian(normal) distributions and convert it into required
random variables with given mean and covariance matrix. For convenience we assume mean vector
is zero vector.

Note that covariance matrices are symmetric positive definite matrices.

(The reason you can deduce from formula for density function of multivariate normal distribution.
Make a try)

It’s eigen values are real and positive and eigen vectors are orthogonal. The principle with an
Example

Let Y be required 2-tuple random variate with zero mean.

E(Y) _
E(Y»)

0
0

Thatis ¥ = ? ].E(Y):

2

V(1) Cov(Y1Y2)
Cov (Y2 Y7) V (Y2)

2 2
Cov(Y):E(YYT):E[ ne nn ]_ E(11*) E(MYa) ]

nYT Y || E(bY)  E(Y2?)
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Root of a Square Matrix and It’s Applications

LetCov(Y):Z:[ i }1 ]

Compute eigen decomposition of }_ = [ ? 411 ]

We generate two independent N(0,1)random variate. Denote that pair of random variable as X
Generate X as two rows (say 2x100000 matrix) Each column is a two tuple. We have such 100000

samples .

Compute Y = B * X. It is a mapping that change independent random variates to dependent

Y =sast

B=S(Y)"s’

random variates with given covariance ).

Proof:

E(X)=(0,0)’

Cov(X)=E(X*X")=[1 0; 0 1];

Let Y=B*X, B is symmetric

E(Y)=B*E(X)=(0,0)’

Cov(Y)=E(Y*Y")=B*E(X*X’)B’=B*I*B’=B*B=}_

close(gct)
Sigma=[4 2;2 8];
[a bl=eig(Sigma);
bl=sqrt (b);
B=a*blxa';

B N=100000;
x1l=randn(1,N);
x2=randn (1,N);
covx=(1/N)*X*X";
covy=(1/N)*Y*Y"';
figure

plot (x1,x2,"'*x"');
figure

plot (Y(1,:),Y(2,:),'0");

Assignment Questions

. . . . 2
1. Find four square root matrices corresponding to matrix A = [ 1
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SOLUTION

Here the key concept is that, while taking square root of the eigen values, ++/A will come. So fora 2 x 2
matrix, there are 4 such combinations. These different combinations can be created using a simple
matrix multiplication:

o=} 0] (16.1)
1
-1 0
=, _1] (16.2)
-1 0
a=, 1] (16.3)
1 0
a=|, _1] (16.4)
(16.5)

Using the matrix product, b; = c;E, where E is the diagonal matrix of eigen values of A. Now B; =
a* b; * a~' define the i square root of A. Matlab code for and its output is given in below.

A=[2 1;1 4];

[a bll=eig(A);

bl= sqrt(bl);

b2=[-1 0;0 -1].%*b1;

b3=[1 0;0 -1].%*b1;

b4=[-1 0;0 1].*b1l;
Bi=a*bil*inv(a);

disp("First square root of A:")

First square root of A:

disp (B1);

1.3825 0.2976
0.2976 1.9777

B1*B1 ;
B2=a*b2*inv (a);
disp("Second square root of A:")

Second square root of A:

disp (B2);

-1.3825  -0.2976
-0.2976  -1.9777

B2*B2;
B3=a*b3*inv(a);
disp("Third square root of A:")
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Third square root of A:

disp(B3);

0.7672 -1.1880
-1.1880 -1.6089

B3*B3 ;

B4=a*xbdxinv(a);

B4xB4;

disp ("Fourth square root of A:")

Fourth square root of A:

disp(B4);

-0.7672 1.1880
1.1880 1.6089

2. Generate 100000 random variate from Gaussian distribution with following mean and covariance
matrix by modifying above code

0 5 21
p=101;>=2 4 3
0 1 3 8

SOLUTION
Matlab code and its output for this task is given below.

close(gct)

Sigma=[5 2 1;2 4 3; 1 3 8];

[a bl=eig(Sigma); 4 a 15 eigen vectors, diag(b) is eigen values

bl=sqrt(b); 7 find square root

B=a*blxa'; / Generate transformation matriz

N=100000;

xl=randn(1,N); /7 <ndependent Normal random wvariate

x2=randn (1,N) ;

x3=randn(1,N);

X=[x1; x2;x3]; 7/ two-tuple walues in colums

Y=B*X; / transform 2-tuple Xs to two-tuple Ys [ checking of
Covartance of generated X samples

covx=(1/N) .x(X*X"') / checking of Covariance of generated Y samples

covx = 3x3
0.9970 0.0014 -0.0053
0.0014 0.9963 0.0013
-0.0053 0.0013 1.0011
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covy=(1/N) .x(Y*Y")

covy = 3x3
4.9850 1.9927 0.9703
1.9927 3.9896 2.9980
0.9703 2.9980 8.0073

figure
plot (x1,x2,'*"');

figure
plot(Y(1,:),Y(2,:),'ro');
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1 O T T T T T T T O T T

Where is this useful? One of its use is in the theory of ‘Kalman Filters’. It is a family of classical control
and information fusion algorithms. We will use this in Autonomous cars and UAV control
applications.

RESULTS

1. Square root of a matrix is created from its spectral decomposition.

2. One application of square root of a square matrix is discussed
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