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1 | Assignment 80
Introduction to Discrete-Time Fourier
Transform (DTFT) and FIR Filters

1.1 Introduction to Discrete-Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) is a mathematical tool used to analyze discrete-time
signals in the frequency domain. It transforms a sequence of discrete time samples into a continuous
function of frequency, providing insights into the frequency components present in the signal.

Mathematical Definition

For a discrete-time signal x[n], the DTFT is defined as:

X (e jω) =
∞∑

n=−∞
x[n]e− jωn

The inverse DTFT allows us to recover the original signal from its frequency-domain representation:

x[n] = 1

2π

∞∑
k=−∞

X [k]e jωn

Intuition

The DTFT provides a way to understand how much of each frequency is present in the signal. By an-
alyzing the magnitude and phase of X (e jω), we can determine the harmonic content and periodicity
of the original signal.

Properties of the DTFT

• Linearity: If x1[n] and x2[n] are signals, then the DTFT satisfies:

ax1[n]+bx2[n] =⇒ aX1(e jω)+bX2(e jω)

• Time Shifting: Shifting the signal in time affects its DTFT:

x[n −n0] =⇒ X (e jω)e− jωn0

• Frequency Shifting: Multiplying a signal by an exponential shifts its frequency content:

x[n]e jω0n =⇒ X (e j (ω−ω0))

• Convolution: The DTFT of the convolution of two signals equals the product of their DTFTs:

x[n]∗h[n] =⇒ X (e jω)H(e jω)
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Practical Uses in Data Science and AI

• Signal Modeling: In applications like speech recognition and audio processing, the DTFT helps
model and analyze sound signals, allowing systems to understand frequency characteristics.

• Noise Removal: By transforming a noisy signal into the frequency domain, one can easily iden-
tify and filter out unwanted frequencies, enhancing the quality of the signal.

• Feature Extraction: The frequency components extracted via DTFT can serve as features for
machine learning models, aiding in tasks like pattern classification, where frequency-based
features may offer more discriminative power.

Introduction to Finite Impulse Response (FIR) Filters

Finite Impulse Response (FIR) filters are digital filters characterized by a finite number of non-zero
coefficients in their impulse response. FIR filters are essential tools in signal processing due to their
stability and linear phase response.

Mathematical Definition

An FIR filter is defined by its impulse response h[n], which is non-zero for a finite number of samples:

h[n] = {h[0],h[1], . . . ,h[N −1]}

The output y[n] of the FIR filter can be computed using the convolution of the input signal x[n] with
the filter coefficients h[n]:

y[n] =
N−1∑
k=0

h[k]x[n −k]

Intuition

The impulse response h[n] characterizes how the filter affects the input signal over time. The convo-
lution operation blends the input signal with the filter’s response, producing a new signal that high-
lights certain features or removes others.

Properties of FIR Filters

• Stability: FIR filters are inherently stable, meaning their output remains bounded for a bounded
input, making them reliable for real-time applications.

• Linear Phase: FIR filters can be designed to have a linear phase response, which is crucial for
applications where maintaining the waveform shape of the signal is important (e.g., audio pro-
cessing).

• Realization: FIR filters can be implemented in various forms (e.g., direct form, cascade form),
making them flexible for different applications.

Practical Uses in Data Science and AI

• Signal Smoothing: FIR filters are widely used for smoothing time series data, helping to reduce
variability and highlight trends, which is particularly useful in financial data analysis.

• Feature Enhancement: In image processing, FIR filters can enhance features such as edges and
textures, which are essential for tasks like object recognition and segmentation.

• Noise Reduction: FIR filters are effective for noise reduction in signals, improving data quality
for subsequent analysis or machine learning tasks.

Amrita School of Artificial Intelligence 10
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Example of FIR Filter

Consider a simple FIR filter with the following coefficients:

h[n] = {0.2,0.5,0.2} for n = 0,1,2

If the input signal is given by:

x[n] = {1,2,3,4} for n = 0,1,2,3

The output of the FIR filter can be calculated as follows:

y[0] = 0.2 ·1 = 0.2

y[1] = 0.2 ·1+0.5 ·2 = 0.2+1 = 1.2

y[2] = 0.2 ·1+0.5 ·2+0.2 ·3 = 0.2+1+0.6 = 1.8

y[3] = 0.2 ·2+0.5 ·3+0.2 ·4 = 0.4+1.5+0.8 = 2.7

y[4] = 0.5 ·3+0.2 ·4 = 1.5+0.8 = 2.3

The resulting output signal is:

y[n] = {0.2,1.2,1.8,2.7,2.3}

Matlab Code for Visualization

Below is the matlab code to visualize the DTFT and the FIR filter:

1 % Define the input signal

2 x = [1, 2, 3, 4];

3
4 % Define the FIR filter coefficients

5 h = [0.2, 0.5, 0.2];

6
7 % Compute the output of the FIR filter

8 y = conv(x, h);

9
10 % Compute the DTFT of the input signal

11 N = 512; % Number of points for DTFT

12 omega = linspace(-pi, pi, N);

13 X = zeros(1, N);

14
15 for k = 1:N

16 X(k) = sum(x .* exp(-1j * omega(k) * (0: length(x) -1)));

17 end

18
19 % Plot the results

20 figure;

21
22 subplot(3, 1, 1);

23 stem(x, 'filled ', 'LineWidth ', 1.5);

24 title('Input Signal x[n]');

25 xlabel('n');

26 ylabel('Amplitude ');

27 grid on;

28

Amrita School of Artificial Intelligence 11
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29 subplot(3, 1, 2);

30 stem(h, 'filled ', 'LineWidth ', 1.5);

31 title('FIR Filter Coefficients h[n]');

32 xlabel('n');

33 ylabel('Amplitude ');

34 grid on;

35
36 subplot(3, 1, 3);

37 plot(omega , abs(X), 'LineWidth ', 1.5);

38 title('Magnitude of DTFT |X(e^{j\omega})|');

39 xlabel('\omega (radians/sample)');

40 ylabel('|X(e^{j\omega})|');

41 grid on;

Output of the code is shown in Figure 1.1

Figure 1.1: Visualization of output from FIR filter and DFT.

Visualization Results

• The first plot displays the input signal x[n].

• The second plot shows the FIR filter coefficients h[n].

• The third plot illustrates the magnitude of the DTFT of the input signal |X (e jω)|.

1.1.1 FIR filter design as an optimization problem

To frame the FIR filter design as an optimization problem, follow these steps: First, define the objec-
tive function, which aims to minimize the error between the desired filter response and the actual
response of the designed filter. Next, establish the necessary constraints, including passband and
stopband requirements based on the desired specifications. Finally, use CVX, a MATLAB package for
specifying and solving convex programs, to solve the optimization problem efficiently.

Amrita School of Artificial Intelligence 12
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Assume we want to design an FIR low-pass filter that minimizes the error between the desired fre-
quency response and the actual frequency response of the filter while satisfying the passband and
stopband constraints.

Below is an example MATLAB code using CVX to optimize the filter coefficients:

1 % Parameters

2 fs = 1000; % Sampling frequency (Hz)

3 N = 20; % Filter order

4 f_pass = 15; % Passband frequency (Hz)

5 f_stop = 20; % Stopband frequency (Hz)

6 num_points = 512; % Number of frequency points

7 f = linspace(0, fs/2, num_points); % Frequency range

8 H_d = double(f < f_pass);

9 cvx_begin quiet

10 variable h(N+1);

11 minimize(norm(abs(H) - H_d ', 2))

12 subject to

13 h >= 0;

14 norm(h, 1) <= 1;

15 cvx_end

16 h_opt = h;

17 H = zeros(num_points , 1);

18 for k = 1: num_points

19 H(k) = sum(h_opt .* exp(-1j * 2 * pi * f(k) * (0:N) ') / fs)

;

20 end

21 figure;

22 freqz(h_opt , 1, num_points);

23 title('Optimized FIR Filter Frequency Response ');

24 t = 0:1/fs:1-1/fs;

25 x = sin(2 * pi * 5 * t) + 0.5 * randn(size(t));

26 y_opt = filter(h_opt , 1, x);

27
28 % Visualization of the original and filtered signals

29 figure;

30 subplot(2, 1, 1);

31 plot(t, x, 'b', 'LineWidth ', 1.5);

32 title('Original Signal with Noise');

33 xlabel('Time (s)');

34 ylabel('Amplitude ');

35 grid on;

36
37 subplot(2, 1, 2);

38 plot(t, y_opt , 'r', 'LineWidth ', 1.5);

39 title('Filtered Signal using Optimized FIR Filter ');

40 xlabel('Time (s)');

41 ylabel('Amplitude ');

42 grid on;

Output wave form is shown in Figure 1.2.
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Figure 1.2: Magnitude and Phase of optimized Finite Impulse Response Filter.

1.2 Frequency Response of Filters

Understanding the DTFT and FIR filters is essential for working with digital signals. These concepts
form the foundation for more complex signal processing tasks and are widely applicable in various
fields, including telecommunications, audio processing, image analysis, and machine learning. By
leveraging these concepts, practitioners can effectively model, enhance, and interpret signals to de-
rive meaningful insights from complex data.

The formula

H(ω) = h0 +h1e− jω+·· ·+hN e− j Nω = R(ω)e jφ(ω)

is frequently cited in signal processing textbooks. It represents the frequency response of a system,
especially for Finite Impulse Response (FIR) filters. Although it may look complex, we can break it
down using basic concepts from complex numbers and waves.

Background: Complex Numbers in Signal Processing

1. Complex Numbers: A complex number is written as z = a + j b, where a is the real part, b is the
imaginary part, and j is the imaginary unit ( j =p−1). In signal processing, we use complex numbers
to represent waves. For example, the complex exponential e jω represents a wave of frequency ω.

2. Complex Exponentials and Waves: A complex wave can be expressed as e jωt , which is a combina-
tion of a cosine and sine wave (since e jωt = cos(ωt )+ j sin(ωt )). This is why complex numbers are so
useful in representing signals.

What Does the Formula Mean?

This formula describes a system’s frequency response. Imagine sending a wave (like a sound wave or a
radio signal) through a system that delays and attenuates parts of the wave. The formula tells us how
the output wave is modified after passing through the system.

Input Signal

The input signal can be visualized as a sine or cosine wave, represented as a complex exponential
e jωt , where ω is the frequency of the wave.

Amrita School of Artificial Intelligence 14
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Delays and Attenuation

The coefficients h0,h1, . . . ,hN represent how the system scales (attenuates) and delays different parts
of the input wave. Each term hne− j nω corresponds to a delayed and scaled version of the input wave.

Sum of Delayed Waves

The system takes several delayed versions of the input wave, adds them together, and modifies the
signal in both magnitude and phase. This is what happens in Finite Impulse Response (FIR) filters,
where each delayed wave interacts with the others.

Breaking Down the Formula

The frequency response formula:

H(ω) = h0 +h1e− jω+·· ·+hN e− j Nω

can be interpreted as:

• H(ω): The overall frequency response of the filter.

• hn : The filter coefficients, which determine how much each delayed version of the signal con-
tributes.

• e− j nω: The delays, where ω is the frequency of the input signal and n is the amount of delay.

The formula describes how a signal’s shape changes when it passes through the system, affecting both
its magnitude and phase.

Magnitude and Phase Response

• Magnitude Response R(ω): The magnitude of the frequency response indicates how much the
system amplifies or attenuates signals at different frequencies. It is calculated as the absolute
value:

R(ω) = |H(ω)|

• Phase Responseφ(ω): The phase response shows how much the system shifts the signal in time
for a given frequency. It is the angle (argument) of the complex function H(ω):

φ(ω) = arg(H(ω))

In simpler terms:

• Magnitude: How much the filter boosts or reduces the signal at a certain frequency.

• Phase: How much the filter shifts the signal in time at a certain frequency.

Application in Signal Processing

When multiple delayed and attenuated versions of a signal are added together, the overall change in
the signal’s magnitude and phase is given by this formula. This is useful in applications such as:

• Noise Removal: Filters can remove unwanted noise by attenuating specific frequencies.

• Pattern Recognition: Filters can enhance important features or patterns in signals, which is
useful in machine learning.

Amrita School of Artificial Intelligence 15
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Visualizing the Concept

The input can be seen as a simple wave, and the output is a combination of multiple delayed versions
of this wave. The formula H(ω) describes how the filter affects the signal.

t (time)

Amplitude

Input wave

t (time)

Amplitude

Delayed wave

t (time)

Amplitude

Filtered wave

Figure 1.3: Illustration of frequency response of FIR filter

Figure 1.3 shows an input wave and how the filter delays and scales it. The final output is a combina-
tion of the delayed waves.

1.3 Haar Wavelet

The Haar wavelet is the simplest wavelet transform and can be thought of as a 2-tap FIR filter. It is
highly localized in time but discontinuous, making it suitable for signals with sharp changes.

Mathematical Representation

The Haar scaling function φ(t ) and wavelet function ψ(t ) are defined as:

φ(t ) =
{

1 0 ≤ t < 1

0 otherwise

ψ(t ) =


1 0 ≤ t < 1

2

−1 1
2 ≤ t < 1

0 otherwise

Characteristics

• Simple computation: Haar wavelets are computationally efficient.

• Energy preservation: The Haar transform preserves the signal’s energy.

Applicability

Haar wavelets are often used in:

• Real-time applications such as image compression (e.g., JPEG),

• Analyzing signals with sharp transitions, such as edges in images.

A sample matlab code to create a Haar filter is given below.

1 % Haar filter

2 close(gcf)

3 h0=1/ sqrt (2);

4 h1=1/ sqrt (2);

5 omega =0:0.1: pi;

Amrita School of Artificial Intelligence 16
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6 Hlow=h0+h1*exp(-1*i*omega);

7 H_mag=abs(Hlow);

8 plot(omega ,H_mag);

9 hold on

10 Hhigh=h0-h1*exp(-1*i*omega);H_mag=abs(Hhigh);

11 plot(omega ,H_mag);

Output of the magnitude plots of high pass and low pass Haar filter is shown in Figure 1.4.

Figure 1.4: Magnitude of high pass and low pass Haar filter.

1.4 Daubechies Wavelet

Daubechies wavelets are a generalization of the Haar wavelet, providing smoother and more com-
pactly supported waveforms. These wavelets are well-suited for analyzing smooth signals.

Mathematical representation

Daubechies wavelets use higher-order vanishing moments. For example, the Daubechies 2 (Db2)
wavelet has 4 filter coefficients. The scaling function φ(t ) and wavelet function ψ(t ) are derived from
orthogonal polynomials.

Characteristics

• Smoothness: Daubechies wavelets are more suited for representing smooth signals.

• Efficient decomposition: Daubechies wavelets allow for efficient signal decomposition.

Matlab example

Following code shows a simple case of constructing a Daubechies wavelet.

1 % Daubechies filter

2 close(gcf)

3 omega =0:0.1: pi;

4 [h,g]= wfilters('db2');

5 n=length(h); % here n=4

6 % hard coded for easy understanding

7 % you may use a loop. Note that in matlab index start from 1.
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8 Hlow=h(1)+h(2)*exp(-1*i*omega)+h(3)*exp(-2*i*omega)+h(4)*exp(-3*i*

omega);

9 H_mag=abs(Hlow);

10 plot(omega ,H_mag);

11 hold on

12 Hhigh=g(1)+g(2)*exp(-1*i*omega)+g(3)*exp(-2*i*omega)+g(4)*exp(-3*i*

omega);

13 H_mag=abs(Hhigh);

14 plot(omega ,H_mag);

Problem Statement: Denoising noisy data using Daubechies wavelets

In many real-world applications, signals collected from various sensors or measurement instruments
often contain noise, obscuring the underlying patterns. This problem can be mathematically repre-
sented as:

y(t ) = s(t )+n(t )

where:

• y(t ) is the observed noisy signal,

• s(t ) is the true underlying signal that we aim to recover, and

• n(t ) represents the noise, typically modeled as a random variable with a mean of zero.

The objective is to develop an effective method for denoising the observed signal y(t ) using Daubechies
wavelet transforms. Daubechies wavelets provide compact support and can capture both high-frequency
components (such as noise) and low-frequency components (such as the underlying signal). By ap-
plying wavelet decomposition, we can separate the signal from the noise, enabling us to reconstruct
a cleaner version of the true signal s(t ).

SOLUTION

Given problem can be formulated with a suitable noisy signal. The denoise it using the filter.
Matlab code for this task is given below.

1 % Parameters

2 fs = 1000;

3 t = 0:1/fs:1-1/fs;

4 freq = 5;

5 noise_level = 0.5;

6
7 % Create a clean signal

8 clean_signal = sin(2 * pi * freq * t);

9
10 % Create noisy signal

11 noisy_signal = clean_signal + noise_level * randn(size(t));

12
13 % Choose Daubechies wavelet (e.g., db2)

14 wavelet_name = 'db2';

15
16 % Wavelet decomposition

17 [coeffs , levels] = wavedec(noisy_signal , 5, wavelet_name);

18
19 % Thresholding
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20 % Choose a threshold value (can use different strategies)

21 threshold = sqrt(2 * log(length(noisy_signal))) * median(abs(coeffs

)) / 0.6745;

22
23 % Apply soft thresholding

24 coeffs_thresh = wthresh(coeffs , 's', threshold);

25
26 % Reconstruct the signal from the modified coefficients

27 denoised_signal = waverec(coeffs_thresh , levels , wavelet_name);

28
29 % Plot results

30 figure;

31 subplot(3, 1, 1);

32 plot(t, clean_signal , 'g', 'LineWidth ', 1.5);

33 title('Clean Signal ');

34 xlabel('Time (s)');

35 ylabel('Amplitude ');

36 grid on;

37
38 subplot(3, 1, 2);

39 plot(t, noisy_signal , 'r', 'LineWidth ', 1.5);

40 title('Noisy Signal ');

41 xlabel('Time (s)');

42 ylabel('Amplitude ');

43 grid on;

44
45 subplot(3, 1, 3);

46 plot(t, denoised_signal , 'b', 'LineWidth ', 1.5);

47 title('Denoised Signal using Daubechies Wavelet ');

48 xlabel('Time (s)');

49 ylabel('Amplitude ');

50 grid on;

Output of the code is shown in Figure 1.5.

They are commonly used in image processing and signal compression and denoising.

A Comparison of FIR, Haar, and Daubechies Filters is shown in Table 1.1.

Table 1.1: Comparison of FIR, Haar, and Daubechies Filters

Feature FIR Filter Haar Wavelet Daubechies Wavelet
Type Linear time-invariant Wavelet transform Wavelet transform

Phase Response Can be linear Not linear Not linear
Computational Complexity Moderate Very low Moderate

Smoothing Not optimal for sharp changes Good for sharp transitions Good for smooth signals
Energy Preservation Depends on design Yes Yes

Application General filtering Real-time, edge detection Compression, denoising

1.4.1 Sparsity-based signal processing and L1 norm optimization

Sparsity-based signal processing aims to represent signals with a small number of coefficients, lead-
ing to efficient storage and processing. L1 norm optimization plays a critical role in sparsity-based
approaches, particularly in compressed sensing and signal denoising.
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Figure 1.5: Denoising skill of Daubechies Wavelet filter on a noisy sine wave.

1.4.2 Mathematical formulation

Given a signal x and a transformation matrixΨ, we aim to find a sparse representation α such that:

x =Ψα
The sparse vector α is found by solving an L1 norm minimization problem:

min
α

∥α∥1 subject to ∥x −Ψα∥2 ≤ ϵ

Where:

• ∥α∥1 is the L1-norm, promoting sparsity.

• ϵ is the error tolerance.

Applications in signal processing

• Compressed Sensing: L1 optimization is crucial in recovering signals from fewer measure-
ments than typically required.

• Denoising: It helps in removing noise while preserving important signal features.

• Data Science and Machine Learning: Sparsity-based techniques are used for feature selection
and model compression.

RESULTS

1. Basics of signal processing is revisited.

2. Some common filters and their applications are discussed.

3. A simple FIR filter is designed by optimizing the parameters with CVX solver.

4. Important characteristics of these filters are:
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• FIR filters offer stability and simplicity in general signal processing.

• Haar wavelets are efficient for real-time applications with sharp transitions.

• Daubechies wavelets are better suited for smooth signal analysis and compression.

• Sparsity-based signal processing using L1 optimization opens doors for efficient data rep-
resentation and has wide applications in modern fields like data science and machine
learning.
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2.1 Introduction

The Discrete Fourier Transform (DFT) is a fundamental tool in signal processing that converts a
finite sequence of time-domain samples into their frequency-domain representation. DFT helps de-
compose a discrete signal into its constituent frequency components.
From a Linear Algebra point of view, the DFT provides orthogonal complex exponential bases with
positive and negative integer wave numbers. These wave numbers correspond to the number of full
complex sinusoidal waves sampled to create the bases. Each base function is a complex sinusoid
representing a specific frequency, and the DFT expresses a signal as a linear combination of these
orthogonal basis functions.

2.1.1 Mathematical Representation

For a discrete signal x[n] of length N , the DFT is defined as:

X [k] =
N−1∑
n=0

x[n] ·e− j 2πkn/N , k = 0,1,2, . . . , N −1 (2.1)

Where:

• X [k] is the k-th frequency component.

• x[n] is the input signal.

• N is the total number of samples.

• e− j 2πkn/N is the complex exponential representing rotation in the frequency domain, where k
is the wave number.

The Inverse DFT (IDFT) is given by:

x[n] = 1

N

N−1∑
k=0

X [k] ·e j 2πkn/N , n = 0,1,2, . . . , N −1 (2.2)

2.1.2 Linear algebra perspective

From a linear algebra viewpoint:

• The DFT matrix F is an orthogonal matrix of complex exponentials (sinusoids). Each row cor-
responds to a basis vector, which is a complex sinusoid at a specific frequency.
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• The orthogonality of these basis functions allows decomposition of a signal into independent
frequency components, much like vectors are decomposed into orthogonal bases in Euclidean
space.

• The DFT represents the signal as a sum of these orthogonal basis vectors, weighted by their
respective coefficients X [k].

2.2 What does the dft really do?

The Discrete Fourier Transform (DFT) enables us to transform a signal from the time domain into
the frequency domain, where the signal is interpreted in terms of its frequency content. This trans-
formation is accomplished by expressing the signal as a sum of complex exponential waves, each
corresponding to a different frequency (or wave number).

A complex exponential wave consists of two components:

• A cosine wave: cos(Ωt ), representing the real part.

• A sine wave: sin(Ωt ), representing the imaginary part.

Here,Ω is the angular frequency, defined asΩ= 2π
T , where T is the duration of the signal.

2.2.1 DFT interpretation of a signal

The DFT of a discrete signal allows us to:

1. Interpret the signal in terms of frequency content: The DFT decomposes the signal into its
constituent frequencies, enabling analysis of how much each frequency contributes to the over-
all signal.

2. Perform fast convolution: By converting signals to the frequency domain, convolution of two
sequences (whether 1D, 2D, or nD arrays) can be efficiently performed using the DFT, as con-
volution in the time domain corresponds to multiplication in the frequency domain.

2.2.2 Example: DFT basis for signal length 8

To better understand how the DFT works, consider a signal of length N = 8. The DFT basis matrix
consists of N complex exponential waves (or basis vectors), where each vector corresponds to a dif-
ferent frequency or wave number.

The arrangement of these wave numbers in the DFT basis matrix is as follows:

[0,1,2,3,±4,−3,−2,−1]

These wave numbers correspond to complex exponentials of the form:

[e0 jΩt ,e1 jΩt ,e2 jΩt ,e3 jΩt ,e±4 jΩt ,e−3 jΩt ,e−2 jΩt ,e−1 jΩt ]

whereΩ= 2π
T and T is the duration of the signal. The DFT samples these complex exponentials at N

equi-spaced points.

The first basis vector (e0 jΩt ) corresponds to the zero-frequency component, which is simply a vector
of ones. This is sometimes called the DC component, representing the average value of the signal.

The other basis vectors (ek jΩt for k = 1,2,3, . . . ) correspond to sinusoidal waves with increasing fre-
quency, each representing a different harmonic of the fundamental frequencyΩ.
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2.2.3 Why is the central basis vector’s wave number ±4?

In the case of an 8-point DFT, the wave numbers range from 0 to N −1, but because of the nature of
the complex exponentials, the higher frequencies “wrap around" due to the periodicity of the DFT.
This explains the symmetry of the wave numbers around zero. Specifically:

• The wave number +4 corresponds to a sinusoidal wave that completes exactly four cycles over
the duration of the signal.

• The wave number −4 is equivalent to +4 because of the periodicity of the DFT. Both represent
the same frequency but with opposite phases.

This means that at k =±4, the basis vector corresponds to the highest possible frequency that can be
represented with a signal of length 8. This is called the Nyquist frequency, which is the limit at which
any higher frequencies would begin to alias (or overlap) with lower frequencies due to the discrete
sampling.

2.2.4 Geometrical insight of DFT basis

Each basis vector in the DFT matrix represents a point on the unit circle in the complex plane. The
first basis vector (k = 0) represents the center point (constant DC signal), while the other vectors
rotate around the unit circle, with the rotation speed determined by the wave number k.
At k =±4, the basis vectors rotate the fastest, completing exactly four full cycles over the signal dura-
tion. This is why the central basis vector’s wave number can be ±4: it represents the fastest oscillating
component, capturing the highest frequency in the signal.
Matlab code to do this task is shown below.

1 % Define the signal length

2 N = 8;

3 T = 1; % Duration of the signal (arbitrary units)

4 t = linspace(0, T, N); % Time vector with N points

5
6 % Create a simple original wave (sum of sine and cosine waves)

7 f1 = 1; % Frequency of the first component

8 f2 = 2; % Frequency of the second component

9
10 % Original wave (sum of a cosine and a sine wave)

11 original_wave = cos(2*pi*f1*t) + sin(2*pi*f2*t);

12
13 % Construct the DFT matrix W_N

14 n = 0:N-1;

15 k = n'; % Make k a column vector

16 W_N = exp(-1j * 2 * pi * k * n / N); % N x N DFT matrix

17
18 % Compute the DFT using matrix multiplication

19 dft_wave_matrix = W_N * original_wave .';

20
21 % Compute frequency axis for plotting the DFT (0 to N-1)

22 frequencies = (0:N-1)/T;

23
24 % Plot the original wave in the time domain

25 figure;

26 subplot(2, 1, 1);

27 stem(t, original_wave , 'filled ', 'LineWidth ', 1.5);

28 title('Original Wave in Time Domain ');
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29 xlabel('Time');

30 ylabel('Amplitude ');

31 grid on;

32
33 % Plot the magnitude of the DFT (frequency domain)

34 subplot(2, 1, 2);

35 stem(frequencies , abs(dft_wave_matrix), 'filled ', 'LineWidth ', 1.5)

;

36 title('Magnitude of DFT (Frequency Domain - Matrix Multiplication)'

);

37 xlabel('Frequency (Hz)');

38 ylabel('Magnitude ');

39 grid on;

Output of this code is shown in Figure 2.1.

Figure 2.1: DFT of a wave with wave number 8.

2.2.5 Properties of DFT

• Linearity: If x1[n] and x2[n] have DFTs X1[k] and X2[k], then:

a · x1[n]+b · x2[n]
DFT−−−→ a ·X1[k]+b ·X2[k]

• Periodicity: The DFT is periodic with period N . Thus:

X [k +N ] = X [k]

• Symmetry: For real-valued signals, the DFT exhibits conjugate symmetry:

X [N −k] = X [k]

• Circular Convolution: The DFT of the circular convolution of two signals is the product of their
DFTs.

• Parseval’s Theorem: The total energy in the time domain is equal to the total energy in the
frequency domain:

N−1∑
n=0

|x[n]|2 = 1

N

N−1∑
k=0

|X [k]|2
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2.3 DFT Spectrum and FFT

Understanding the DFT spectrum

The Discrete Fourier Transform (DFT) is a method for analyzing the frequency content of a signal by
expressing it as a linear combination of sinusoidal basis functions (complex exponentials). The DFT
transforms a discrete signal from the time domain into the frequency domain, allowing us to observe
how much of each frequency component is present in the signal.
The DFT spectrum refers to the magnitude of the DFT coefficients. When we compute the DFT of
a signal, the resulting coefficients are generally complex numbers. These coefficients represent the
amplitude and phase of the sinusoidal components that make up the original signal. The magnitude
of these coefficients gives us the strength (or amplitude) of each frequency component, while the
phase tells us the shift of each component relative to time zero.

Linear combination of DFT basis vectors

In the DFT, we express a signal x[n] as a sum of complex exponentials of different frequencies. These
exponentials are the basis vectors of the DFT and are defined as:

WN (k,n) = e− j 2πkn
N , k = 0,1,2, . . . , N −1

Here, N is the number of samples, k is the frequency index, and n is the time index. The DFT formula
is written as:

X [k] =
N−1∑
n=0

x[n]e− j 2πkn
N , k = 0,1,2, . . . , N −1

The result X [k] is the DFT coefficient at frequency k, and it represents how much of the sinusoidal

basis wave e− j 2πkn
N is present in the signal. These coefficients are complex numbers, and each X [k]

contains both amplitude and phase information for that particular frequency component.

Magnitude and phase of DFT coefficients

Each DFT coefficient X [k] is a complex number, and it can be represented as:

X [k] = |X [k]|e jθ[k]

where:

• |X [k]| is the magnitude of the DFT coefficient, which indicates the strength of the frequency
component at k.

• θ[k] is the phase of the DFT coefficient, which indicates the time shift of the corresponding
frequency component.

The DFT spectrum refers to the plot of |X [k]|, the magnitudes of the DFT coefficients, as a function
of k. This tells us how much energy or power is present at each frequency.

Symmetry of DFT spectrum

For real-valued signals, the DFT exhibits symmetry. If x[n] is real-valued, the DFT coefficients have
the property:

X [N −k] = X [k]

where X [k] is the complex conjugate of X [k]. This means that the negative frequency components
(frequencies beyond N /2) are mirror images of the positive frequency components. Therefore, we
often only look at the first half of the DFT spectrum, corresponding to positive frequencies.

Amrita School of Artificial Intelligence 27



2. Assignment 81
Applications of Discrete Fourier Transform

Why N = 2n?

In many cases, the length of the signal N is chosen to be a power of two, i.e., N = 2n . This is done
to allow for the use of the Fast Fourier Transform (FFT) algorithm. The FFT is a highly efficient
algorithm for computing the DFT, reducing the computational complexity from O(N 2) to O(N log N ).
Without FFT, we would need to multiply the signal by the entire DFT matrix, which has a computa-
tional complexity of O(N 2). The FFT algorithm exploits the symmetry and periodicity properties of
the DFT basis vectors to perform the same calculation in a much faster manner.

Fast Fourier Transform

FFT stands for Fast Fourier Transform. It is not a different type of transformation but rather a fast
method of calculating the DFT. Specifically, it allows for efficient computation of DFT coefficients,
especially when N is a power of two. The FFT takes advantage of the mathematical structure of the
DFT and breaks down the problem into smaller, more manageable parts, reducing the number of
operations required to compute the DFT.

2.4 Example: DFT of a Simple Signal

Consider a simple example of a discrete signal, such as a sum of two sinusoids:

x[n] = cos(2π f1n)+ sin(2π f2n)

The DFT will allow us to see the frequency components f1 and f2 in the frequency domain. The
magnitude of the DFT coefficients |X [k]| will show us how much of each frequency is present in the
signal.

2.4.1 MATLAB Code Example

% Parameters

N = 8; % Number of samples

t = 0:N-1; % Time vector

f1 = 1; % Frequency of first component (cosine)

f2 = 2; % Frequency of second component (sine)

% Signal: Sum of a cosine and a sine wave

x = cos(2*pi*f1*t/N) + sin(2*pi*f2*t/N);

% Compute the DFT using FFT

X = fft(x);

% Compute magnitude and phase of DFT coefficients

X_magnitude = abs(X);

X_phase = angle(X);

% Plot the original signal

figure;

subplot(3,1,1);

stem(t, x, 'filled');

title('Original Signal');

xlabel('Sample');

ylabel('Amplitude');

% Plot the magnitude of DFT coefficients
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subplot(3,1,2);

stem(0:N-1, X_magnitude, 'filled');

title('Magnitude of DFT');

xlabel('Frequency Index');

ylabel('Magnitude');

% Plot the phase of DFT coefficients

subplot(3,1,3);

stem(0:N-1, X_phase, 'filled');

title('Phase of DFT');

xlabel('Frequency Index');

ylabel('Phase (radians)');

2.4.2 A fast summary of key points

• DFT Spectrum: The magnitude of the DFT coefficients represents how much of each frequency
is present in the signal.

• DFT and Basis Vectors: The DFT expresses the signal as a sum of sinusoidal basis functions,
each corresponding to a different frequency.

• Efficiency with FFT: By choosing N as a power of two, we can use the FFT algorithm to compute
the DFT efficiently, reducing the time complexity significantly.

The DFT and FFT are crucial tools in signal processing, enabling us to analyze signals in the frequency
domain, perform fast convolutions, and apply filters. Understanding the DFT spectrum is the first
step toward mastering more advanced topics like spectral analysis, filtering, and data compression.

2.5 Applications of DFT

2.5.1 Spectral analysis

The DFT is widely used to analyze the frequency content of discrete signals. By converting a sig-
nal from the time domain to the frequency domain, the DFT allows the identification of dominant
frequencies present in the signal. This is especially useful in fields like audio processing, communi-
cations, and medical imaging.
Example: Analyzing the frequency spectrum of an audio signal to identify specific tones or noise.

2.5.2 Filter design

The DFT is commonly used in designing and analyzing digital filters. The frequency response of a fil-
ter can be obtained using the DFT, allowing engineers to inspect how well a filter passes or attenuates
certain frequencies.
Example: Designing a low-pass FIR filter using the DFT to minimize the error between desired and
actual responses.

2.5.3 Image Processing

In image processing, 2D DFT is used for operations like image filtering, compression, and recon-
struction. Applying DFT to images separates frequency components, helping to identify features or
remove noise.
Example: JPEG compression utilizes DFT to represent an image in the frequency domain, discarding
high-frequency components to reduce file size.
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2.5.4 Modulation and demodulation

In communication systems, modulation techniques like OFDM (Orthogonal Frequency Division Mul-
tiplexing) rely on the DFT to modulate and demodulate data across multiple frequency channels.
Example: OFDM in Wi-Fi systems handles data transmission across several sub-carriers, increasing
robustness against noise.

2.5.5 Signal reconstruction

The Inverse DFT (IDFT) reconstructs a signal from its frequency components, which is useful when
signals are compressed or transmitted in the frequency domain.
Example: Reconstructing an audio signal after transmission in compressed frequency form.

2.6 Example: FIR Filter Design Using DFT

2.6.1 Problem statement

Design a low-pass FIR filter using the DFT and analyze its performance in the frequency domain.

2.6.2 Steps

1. Define the desired frequency response:

Hd ( f ) =
{

1 for f ≤ fpass

0 for f ≥ fstop

2. Compute the DFT of the desired response to obtain the filter coefficients.

3. Apply the filter to a noisy signal and analyze the results.

Matlab code for this task is given below.

% Parameters
f s = 1000; % Sampling frequency (Hz)

N = 50; % F i l t e r order
f_pass = 100; % Passband frequency (Hz)
f_stop = 150; % Stopband frequency (Hz)
num_points = 512; % Number of frequency points f o r DFT

% Frequency vector
f = linspace ( 0 , f s /2 , num_points ) ; % Frequency range
H_d = double ( f < f_pass ) ; % Desired frequency response ( ideal low−

pass f i l t e r )

% Apply Inverse DFT to get time−domain f i l t e r c o e f f i c i e n t s
h = i f f t (H_d) ;

% Plot frequency response
figure ;
freqz (h , 1 , num_points , f s ) ;
t i t l e ( ' FIR F i l t e r Frequency Response ' ) ;

% Generate a noisy signal
t = 0:1/ f s :1 −1/ f s ; % Time vector
x = sin (2 * pi * 50 * t ) + 0.5 * randn ( s i z e ( t ) ) ; % Signal with noise
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% F i l t e r the signal
y = f i l t e r (h , 1 , x ) ;

% Plot o r i g i n a l and f i l t e r e d s i g n a l s
figure ;
subplot ( 2 , 1 , 1 ) ;
plot ( t , x , 'b ' ) ;
t i t l e ( ' Original Signal ' ) ;
xlabel ( 'Time ( s ) ' ) ;
ylabel ( ' Amplitude ' ) ;

subplot ( 2 , 1 , 2 ) ;
plot ( t , y , ' r ' ) ;
t i t l e ( ' F i l t e r e d Signal ' ) ;
xlabel ( 'Time ( s ) ' ) ;
ylabel ( ' Amplitude ' ) ;

Output of the code is shown in Figure 2.2.

(a) FIR filter action (b) Filtering with DFT.

Figure 2.2: Demonstration of a DFT filter

2.7 Designing Optimal Filters for Denoising

In the field of signal processing, denoising plays a vital role in recovering true signals obscured by
noise. Traditional filtering methods often rely on fixed designs, which can be inadequate in address-
ing the unique characteristics of varying noise. To tackle this challenge, we propose an innovative
approach that utilizes Discrete Fourier Transform (DFT) to design optimal filters tailored specifically
for the given noisy signal. By framing the filtering process as an optimization problem, we use tools
like the CVX solver to minimize the error between the denoised signal and its true counterpart, ensur-
ing that the resulting filter adapts effectively to the signal’s frequency components. This methodology
not only enhances denoising capabilities but also sets the stage for further exploration of advanced
optimization techniques in signal processing.

2.7.1 Mathematical steps for optimal filter design

To design an optimal filter for denoising using DFT, we follow these key steps:
Given a noisy signal xnoisy, we can define an unoptimized filter Hnon-optimized as follows:

Hnon-optimized( f ) =
{

1 for | f | ≤ fcutoff

0 for | f | > fcutoff

where f represents the frequency and fcutoff is a predefined cutoff frequency for a low-pass filter.
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To create an optimized filter H , we minimize the error in denoising. The optimization problem can
be stated as:

Minimize ∥H ·Xnoisy −Xtrue∥2

where Xnoisy and Xtrue are the DFTs of the noisy and true signals, respectively.
To ensure the filter remains stable and bounded, we introduce constraints on the filter coefficients:

|H( f )| ≤ 1 ∀ f

Using CVX, the optimization problem is formulated as:

cvx_begin

variable H(N) complex % Frequency domain filter

minimize( norm(H .* X_noisy - X_true, 2) ) % Objective function

subject to

abs(H) <= 1; % Magnitude constraint

cvx_end

Once the optimization is complete, the optimized filter is applied in the frequency domain:

Xdenoised = H ·Xnoisy

Finally, the denoised signal in the time domain can be obtained using the inverse DFT:

xdenoised = ifft(Xdenoised)

Matlab code for this task is given below.

1 % Generate a simple signal (e.g., a sine wave)

2 n = 0:99;

3 x_true = sin(2*pi*0.1*n); % True signal

4
5 % Add noise to the signal

6 noise = 0.3 * randn(size(n));

7 x_noisy = x_true + noise;

8 X_noisy = fft(x_noisy);

9 X_true = fft(x_true);

10 N = length(X_noisy);

11 cvx_begin quiet

12 variable H(N) complex

13 minimize( norm(H .* X_noisy ' - X_true ', 2) )

14 subject to

15 abs(H) <= 1;

16 cvx_end

17
18 X_denoised_optimized = H .* X_noisy ';

19 x_denoised_optimized = ifft(X_denoised_optimized);

20 % Define a cutoff frequency (e.g., low -pass filter)

21 cutoff = 10;

22 H_non_optimized = zeros(size(X_noisy));

23 H_non_optimized (1: cutoff) = 1; % Keep low frequencies

24 H_non_optimized(end -cutoff +1:end) = 1; % Keep symmetric low

frequencies

25
26 X_denoised_non_optimized = H_non_optimized .* X_noisy ';
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27 x_denoised_non_optimized = ifft(X_denoised_non_optimized);

28 figure;

29 subplot (3,1,1);

30 plot(n, x_true , 'g', 'LineWidth ', 1.5);

31 title('True Signal ');

32 xlabel('Sample Index');

33 ylabel('Amplitude ');

34 grid on;

35 subplot (3,1,2);

36 plot(n, x_noisy , 'b', 'LineWidth ', 1.5);

37 title('Noisy Signal ');

38 xlabel('Sample Index');

39 ylabel('Amplitude ');

40 grid on;

41 subplot (3,1,3);

42 hold on;

43 plot(n, real(x_denoised_non_optimized), 'r--', 'LineWidth ', 1.5);

44 plot(n, real(x_denoised_optimized), 'k-', 'LineWidth ', 1.5);

45 title('Denoised Signals ');

46 xlabel('Sample Index');

47 ylabel('Amplitude ');

48 legend('Non -Optimized DFT Filter ', 'Location ', 'northeast ');

49 grid on;

Output of the code is shown in Figure 2.3.

Figure 2.3: Effect of optimized DFT filtering on a noisy image.

2.8 Denoising Signals Without Ground Truth

In many practical scenarios, acquiring the ground truth of a signal can be challenging, particularly
in applications such as sensor data processing or communications. This section presents an inno-
vative approach to signal denoising that uses two noisy versions of the same underlying signal, both
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contaminated by independent and identically distributed (i.i.d.) noise. By assuming that the noise
characteristics are similar across both signals, we can utilize statistical properties to optimize the de-
noising process. This method demands the need for a reference signal (even a noisy one!), relying
instead on the inherent correlations between the noisy inputs to infer a cleaner approximation of the
true signal.
The optimization is formulated as a minimization problem, wherein we seek to reduce the error be-
tween the denoised output and the expected true signal. By employing techniques such as convex
optimization, we can derive a frequency-domain filter that efficiently combines the information from
both noisy signals, enhancing the overall denoising effectiveness. This approach demonstrates that it
is possible to achieve substantial noise reduction and recover a more accurate representation of the
original signal, solely based on statistical properties derived from the available noisy observations.
The results underscore the potential of this method as a robust alternative for signal processing tasks
where ground truth information is not readily accessible.

2.8.1 Mathematical formulation for denoising

Let x(t ) be the true signal we aim to recover, and let n1(t ) and n2(t ) be two independent noise com-
ponents that contaminate the true signal, resulting in two observed signals:

y1(t ) = x(t )+n1(t )

y2(t ) = x(t )+n2(t )

Assuming n1(t ) and n2(t ) are i.i.d. noise with zero mean and variance σ2, our objective is to find a
denoised signal x̂(t ) that minimizes the expected squared error:

x̂(t ) = argmin
x(t )

E
[
(x(t )− x̂(t ))2]

To achieve this, we define a frequency-domain filter H( f ) and optimize it based on the observed noisy
signals. The optimization problem can be formulated as:

Ĥ = argmin
H

∥H ·Y −X ∥2
2

where Y is the DFT of the noisy signals y1(t ) and y2(t ), and X represents the DFT of the true signal
x(t ). The filter is subject to constraints such as:∣∣H( f )

∣∣≤ 1

Finally, the denoised signal is obtained by applying the optimized filter in the frequency domain:

Ŷ = Ĥ ·Y

and transforming back to the time domain:

x̂(t ) = IFFT(Ŷ )

Matlab code for this task is given below.

1 n = 0:99; % Sample index

2 x_true = sin(2*pi*0.1*n);

3 noise1 = 0.3 * randn(size(n));

4 noise2 = 0.3 * randn(size(n));

5 x_noisy1 = x_true + noise1;

6 x_noisy2 = x_true + noise2;

7 N = length(x_noisy1);

8 W = exp(-2*pi*1i*(0:N-1) '*(0:N-1)/N) / sqrt(N);

9 X_noisy1 = W * x_noisy1 ';
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10 X_noisy2 = W * x_noisy2

11 cvx_begin quiet

12 variable H(N) complex

13 minimize( norm(H .* X_noisy1 - W * x_true ', 2) + ...

14 norm(H .* X_noisy2 - W * x_true ', 2) )

15 subject to

16 % Ensure filter is bounded in magnitude

17 abs(H) <= 1;

18 cvx_end

19
20 X_denoised = H .* X_noisy1;

21 x_denoised = real(W' * X_denoised);

22 figure;

23
24 subplot (3,1,1);

25 plot(n, x_noisy1 , 'b', 'LineWidth ', 1.5);

26 title('Noisy Signal 1');

27 xlabel('Sample Index');

28 ylabel('Amplitude ');

29 grid on;

30
31 subplot (3,1,2);

32 plot(n, x_noisy2 , 'r', 'LineWidth ', 1.5);

33 title('Noisy Signal 2');

34 xlabel('Sample Index');

35 ylabel('Amplitude ');

36 grid on;

37
38 subplot (3,1,3);

39 plot(n, x_true , 'g', 'LineWidth ', 1.5);

40 hold on;

41 plot(n, x_denoised , 'k--', 'LineWidth ', 1.5);

42 title('True Signal and Denoised Signal ');

43 xlabel('Sample Index');

44 ylabel('Amplitude ');

45 legend('True Signal ', 'Denoised Signal ', 'Location ', 'northeast ');

46 grid on;

Output of this code is shown in Figure 2.4.
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Figure 2.4: Optimized DFT that denoise a signal without ground truth.

2.9 Comparison with Other Transform Techniques

2.9.1 DFT vs. Fast Fourier Transform (FFT)

DFT is the theoretical foundation, while FFT is a more efficient algorithm for computing the DFT. The
FFT reduces computational complexity from O(N 2) to O(N log N ), making it more practical for large
datasets.

2.9.2 DFT vs. Wavelet Transform

While the DFT captures frequency content, the Wavelet Transform captures both time and frequency
content, making it useful for analyzing non-stationary signals.

2.10 Tasks

1. Form the frequency spectrum of a triangular signal.

SOLUTION

Matlab code for this task is given below.

1 close(gcf)

2 x=[0:64 63: -1:1] '; % signal value increases from 0 to 64 and

then decreases to 1

3 % note that signal length is 128

4 figure

5 stem(x);

6 X=fft(x); % find DFT coefficients

7 X=abs(fftshift(X));

8 % above line of code make the spectrum centred at origin and

then find magnitude

9 ind =[ -64:1:0 1:63]; % wave numbers( or frequency) for plotting

the shifted spectrum
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10 % ind is used for marking the x-axis. Otherwise it will show 1

to 128 along x-axis

11 figure

12 stem(ind ,X);

Output of the code is shown in Figure 2.5.

(a) Triangular Wave (b) Frequency Plots.

Figure 2.5: Frequency plot of the triangular wave

Matlab code for this task is given below.

1 close(gcf)

2 x=[0:64 63: -1:1] '; % signal value increases from 0 to 64 and

then decreases to 1

3 % note that signal length is 128

4 figure

5 stem(x);

6 X=fft(x); % find DFT coefficients

7 X=abs(fftshift(X));

8 % above line of code make the spectrum centred at origin and

then find magnitude

9 ind =[ -64:1:0 1:63]; % wave numbers( or frequency) for plotting

the shifted spectrum

10 % ind is used for marking the x-axis. Otherwise it will show 1

to 128 along x-axis

11 figure

12 stem(ind ,X);

2. Convolve sequences 1, 1 with 1 2 1 , the out put is the sequence 1 3 3 1.

SOLUTION

If we linearly convolve two sequences of length m and n, the resulting sequence will have a
length of m +n −1. FFT and inverse FFT can be employed for convolving two sequences.

If we convolve sequences 1, 1 with 1 2 1 , the out put is the sequence 1 3 3 1 , a sequence of
length of 4. To obtain the result using FFT , convert the two input sequence to the same length
of the output sequence by appending zeros. So x = [1100]′, y = [1210]′. The following Matlab
code will demonstrate the process.

1 % convolution using fft

2 x=[ 1 1 0 0]';

3 y=[1 2 1 0]';

4 z1=ifft(fft(x).*fft(y));

5 z2=conv ([1 1]',[1 2 1]');

6 disp('Convolution using FFT:');
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7 disp(z1);

8 disp('Convolution using built -in function:');

9 disp(z2);

10 if z1==z2

11 disp('Both the approaches gives the same result:')

12 else

13 disp('Results are different:');

14 end

Output of the code is shown below:

Convolution using FFT:

1

3

3

1

Convolution using built-in function:

1

3

3

1

Both the approaches gives the same result:

3. Convolve sequence {1,1} with itself fifteen times to get a sequence of 16 numbers using FFT. Do
not use any loop in the program.

SOLUTION

The convolution theorem states that the Discrete Fourier Transform (DFT) of the convolution
of two sequences is the element-wise product of their DFTs:

DFT {x[n]∗h[n]} =DFT {x[n]} ·DFT {h[n]}

where ∗ denotes convolution, and · represents pointwise multiplication in the frequency do-
main.

In this problem, we convolve the sequence {1,1} with itself 15 times. Instead of performing mul-
tiple convolutions in the time domain, we multiply the DFT of the sequence in the frequency
domain. Let X [k] be the DFT of the zero-padded sequence x[n] = {1,1}. Then, the DFT of the
15-fold convolution is:

X [k]15 = (DFT {x[n]})15

Thus, the result in the frequency domain is:

DFT {y[n]} = X [k]15

To ensure linear convolution using the DFT (which performs circular convolution by default),
we apply zero padding. If two sequences of length m and n are convolved, the result has length
m +n −1.

In this case, the sequence {1,1} has length 2, and convolving it 15 times results in a sequence of
length 16. To achieve this result, we zero-pad the sequence to a length of 16 before applying the
FFT.

x[n] = {1,1}
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Zero-padded to length 16:

xpadded[n] = {1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the DFT with com-
plexity O(N log N ). In this problem, we compute the FFT of the zero-padded sequence:

X [k] =FFT {xpadded[n]}

Now to convolve the sequence {1,1} with itself 15 times, we use the convolution theorem and
raise the DFT of the sequence to the power of 15:

Y [k] = X [k]15

Finally, the inverse FFT (IFFT) transforms the frequency-domain result back into the time do-
main:

y[n] =IFFT {Y [k]}

Matlab code for this entire task is given below.

1 x = [1, 1];

2 n_conv = 15;

3 N = 2^ nextpow2 (2 * n_conv);

4 x_padded = [x, zeros(1, N - length(x

5 X_fft = fft(x_padded);

6 X_fft_n_conv = X_fft.^ n_conv;

7 y = ifft(X_fft_n_conv);

8 y_final = real(y(1:16));

9 disp('Resulting sequence after 15 convolutions:');

10 disp(y_final);

Output of the code is shown below.

Resulting sequence after 15 convolutions:

1.0e+03 *

0.0010 0.1050

0.4550 1.3650

3.0030 5.0050

6.4350 6.4350

5.0050 3.0030

1.3650 0.4550

0.1050 0.0150

0.0010 0.0150

RESULTS

1. Mathematical foundations and properties of DFT is revisited.

2. Skill of FIR and DFT filters are tested.

3. Develop an fine tuned filter by optimizing the filtering parameters with CVX solver.

4. A novel approach to denoise a signal without ground truth is discussed and successfully imple-
mented.

5. Various type of filters in signal processing are revisited and compare their characteristics.
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3.1 Introduction

The Fibonacci sequence is a famous sequence defined as follows:

F (n) =


0 if n = 0

1 if n = 1

F (n −1)+F (n −2) if n ≥ 2

The first few terms of the Fibonacci Sequence are 0,1,1,2,3,5,8,13,21,34, . . .. This Sequence has nu-
merous applications in optimization, particularly in algorithms and data structures, such as dynamic
programming and greedy algorithms.

3.1.1 Generating the Fibonacci sequence

To generate the Fibonacci Sequence, we can use a simple iterative method or a recursive approach.
Here is a concise algorithm using an iterative approach:

function fibonacci(n)

F = zeros(1, n);

F(1) = 0;

F(2) = 1;

for i = 3:n

F(i) = F(i-1) + F(i-2);

end

return F;

end

3.1.2 Golden section ratio

The golden section ratio, often denoted by φ, can be derived from the Fibonacci Sequence as:

φ= lim
n→∞

F (n)

F (n −1)
≈ 1.6180339887

To find the golden section ratio using the shifting property in finite differences, we can express the
ratio of consecutive Fibonacci numbers as:

φn = F (n)

F (n −1)

As n increases, φn converges to φ.
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Using the result from the finite difference;

Fn+2 = Fn+1 +Fn

=⇒ E 2Fn −EFn −Fn = 0

=⇒ (
E 2 −E −1

)
Fn = 0

where, E is the shift operator defined by E(yn) = yn+1. The auxiliary equation is given by

λ2 −λ−1 = 0

Solving this quadratic equation, we get

[
λ1

λ2

]
=


1+p

5

2
1−p

5

2

=
[
φ1

φ2

]

3.1.3 Matrix representation of the Fibonacci sequence

The Fibonacci numbers can be generated using matrix multiplication. The relation can be repre-
sented as follows: [

F (n)
F (n −1)

]
=

[
1 1
1 0

]
·
[

F (n −1)
F (n −2)

]
Defining the transformation matrix A:

A =
[

1 1
1 0

]
We can express the n-th Fibonacci number using matrix exponentiation:[

F (n)
F (n −1)

]
= An−1 ·

[
F (1)
F (0)

]
= An−1 ·

[
1
0

]

3.1.4 Similarity matrix representation

To form a similarity matrix representation, we first need to find the eigenvalues and eigenvectors
of the transformation matrix A. The eigenvalues λ of A can be found by solving the characteristic
polynomial:

det(A−λI ) = 0

Calculating the determinant, we get:

det

[
1−λ 1

1 −λ
]
= (−λ)(1−λ)−1 =λ2 −λ−1 = 0

The eigenvalues are:

λ1,2 = 1±p
5

2

The connection between the two eigenvaluesφ1 andφ2 of the Fibonacci transformation matrix A can
be understood through their definitions and relationships in the context of the Fibonacci sequence.
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3.1.5 Eigenvalues of the Fibonacci matrix

Given the transformation matrix:

A =
[

1 1
1 0

]
the characteristic polynomial is derived from the determinant:

det(A−λI ) = 0

This yields the polynomial:

λ2 −λ−1 = 0

Solving this quadratic equation, we find the eigenvalues:

φ1 = 1+p
5

2
(the golden ratio)

φ2 = 1−p
5

2

3.1.6 Relationship between φ1 and φ2

Sum and Product of Eigenvalues: The eigenvalues have a well-defined relationship given by Vieta’s
formulas: - The sum of the eigenvalues:

φ1 +φ2 = 1

- The product of the eigenvalues:
φ1 ·φ2 =−1

Reciprocal Relationship: The second eigenvalue φ2 is negative and less than zero:

φ2 =− 1

φ1

Decay of Contributions: In the context of the Fibonacci sequence, while φ1 dominates the growth
of the Fibonacci numbers due to its positive nature, φ2 contributes significantly less as n increases.
Specifically, because |φ2| < 1, its contributions diminish to zero in Binet’s formula as n becomes large:

Fn = 1p
5

(
φn

1 −φn
2

)≈ 1p
5
φn

1 for large n

We will prove this at the end of this discussion using Eigen decomposition.
Next, we find the corresponding eigenvectors by solving (A−λI )v = 0. For λ1 =φ:

(A−φI )v =
[

1−φ 1
1 −φ

][
x1

x2

]
=

[
0
0

]
Solving this system gives the eigenvector corresponding to λ1:

v1 =
[

1
φ−1

]
For λ2 =−φ−1:

(A+φ−1I )v =
[

1+φ−1 1
1 −φ−1

][
x1

x2

]
=

[
0
0

]
This gives us another eigenvector.
The transformation matrix can be expressed in terms of its eigenvalues and eigenvectors as:
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A = PDP−1

where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues.

3.1.7 Binet’s formula

Using the properties of the golden ratio and the similarity matrix representation, we can express the
n-th Fibonacci number as:

Fn = P ·Dn−1 ·P−1 ·
[

F (1)
F (0)

]
From this, we can derive:

Fn = 1p
5

((
1+p

5

2

)n

−
(

1−p
5

2

)n)
As n becomes large, the second term becomes negligible, leading us to Binet’s formula:

Fn = nearest integer

(
1p
5

(
1+p

5

2

)n)
This formula is derived from the eigenvalue-based matrix representation and reflects the growth rate
of Fibonacci numbers in terms of the golden ratio.
The Fibonacci Sequence not only showcases an intriguing numerical pattern but also provides in-
sights and tools for optimization in various fields. Its applications span areas such as algorithm anal-
ysis, computational mathematics, and even financial modeling.

3.2 Applications of Golden Section Ratio in Optimization, Signal Process-
ing, and Machine Learning

The Golden Section Ratio, denoted as φ and approximately equal to 1.618, is instrumental in op-
timization techniques across various fields, including engineering, signal processing, and machine
learning. The ratio is derived from the equation:

φ= 1+p
5

2

This ratio allows a given interval to be divided in such a way that the ratio of the smaller segment to
the larger segment is the same as the ratio of the larger segment to the whole. This property facilitates
efficient search methods, making it an invaluable tool in optimization problems.

3.2.1 Optimization in signal processing

In signal processing, the Golden Section Ratio is utilized in filter design and parameter optimization.
Consider a digital filter where the goal is to minimize the error between the desired filter response
Hd (ω) and the actual response Ha(ω). The cost function can be defined as:

E( f ) =
∫

|Hd (ω)−Ha(ω)|2dω

To find the optimal cutoff frequency f ∗, the Golden Section Search method can be applied:

1. Define the interval [a,b] for f .
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2. Calculate points using the Golden Section Ratio:

c = b − b −a

φ
,

d = a + b −a

φ
.

3. Evaluate E(c) and E(d).

4. Narrow the interval based on which point yields a lower error.

Here’s a matlab code snippet that demonstrates the Golden Section Search method to find the opti-
mal cutoff frequency for a hypothetical digital filter:

function [optimal_freq, min_error] = golden_section_search(func, a, b, tol)

% Golden Section Search to minimize a function 'func' in interval [a, b]

phi = (1 + sqrt(5)) / 2; % Golden ratio

resphi = 2 - phi; % Inverse of the golden ratio

% Initialize points

c = b - resphi * (b - a);

d = a + resphi * (b - a);

while abs(b - a) > tol

if func(c) < func(d)

b = d; % Move the upper bound down

else

a = c; % Move the lower bound up

end

c = b - resphi * (b - a); % Recalculate c

d = a + resphi * (b - a); % Recalculate d

end

optimal_freq = (a + b) / 2; % Midpoint gives optimal frequency

min_error = func(optimal_freq); % Evaluate minimum error

end

cost_function = @(f) (f - 1)^2 + 0.1 * randn; % Sample cost function with noise

[a, b] = deal(0, 2); % Interval for search

tolerance = 1e-5; % Tolerance for convergence

[optimal_freq, min_error] = golden_section_search(cost_function, a, b, tolerance);

fprintf('Optimal Cutoff Frequency: %f\nMinimum Error: %f\n', optimal_freq, min_error);

3.2.2 Optimization in Machine Learning

In the context of machine learning, the Golden Section Ratio is also useful for hyperparameter tun-
ing, which is essential for optimizing model performance. Many algorithms require careful selection
of hyperparameters, such as learning rates or regularization strengths. The Golden Section Search
method can be employed to minimize validation error.
For example, given a model’s validation error as a function of hyperparameter λ:

E(λ) = ValidationError(λ)
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The same Golden Section Search technique can be applied to find the optimal λ∗ that minimizes
E(λ).
The Golden Section Ratio serves as a powerful optimization tool in signal processing and machine
learning, enabling efficient methods that enhance performance while reducing computational com-
plexity. Its applications demonstrate the versatility and effectiveness of this mathematical concept in
solving practical engineering problems.

RESULTS

1. The Fibonacci sequence is represented as linear system with the transfer matrix notation.

2. Golden section ratio is viewed as the solution of Auxiliary equation of the Shift operator expres-
sion in finite difference and the eigen values of the transfer polynomial.

3. Using similarity matrix approach, general formula to generate Fibonacci sequence {Fn} for large
n.

4. Some applications of the golden ratio in machine learning and signal processing are discussed.
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4.1 Introduction

This session discusses the computation of the derivative of a continuous function using Fast Fourier
Transform (FFT). The approach leverages the properties of FFT to obtain a more efficient solution
compared to traditional numerical differentiation methods.
Length of the Range of Function Considered is L = 20 and the number of samples taken is n = 128.
The fundamental frequency is defined such that the first base of the Discrete Fourier Transform (DFT)
covers one full wave over the length L.

4.1.1 Sampling range

The sample points are taken from the time domain range of [−10,10] (length L = 20).
The maximum positive frequency is 63 and the minimum negative frequency is −64 · f .

4.1.2 Angular frequency values

The angular frequencies are given by:

ω= 2π

L
[0,1,2, . . . ,63,−64,−63, . . . ,−1]

This setup ensures the reconstruction of the signal if the function is slow-varying.

4.2 Finding the Derivative of sech(x) Using FFT

The function domain is taken as [−10,10] with L = 20. The hyperbolic secant function is defined as:

y = sech(x) = 2

ex +e−x

The derivative of y is given by:
d y

d x
=−sech(x) · tanh(x)

Matlab code for this task is given below.

1 % Define the range and sample points

2 L = 20;

3 n = 128;

4 x = linspace (-10, 10, n);

5 y = sech(x); % Original function

6 yd = -sech(x) .* tanh(x); % True derivative

7
8 % Compute FFT of the function
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9 yhat = fft(y);

10
11 % Calculate angular frequencies

12 w = (2 * pi / L) * [0:(n/2 - 1), -(n/2):(-1)];

13
14 % Compute the derivative in frequency domain

15 ydhat = 1i * w .* yhat; % Multiplying by i * w

16
17 % Inverse FFT to get the computed derivative

18 ydcomputed = ifft(ydhat);

19
20 % Compare the true derivative and computed derivative

21 figure;

22 subplot(3, 1, 1);

23 plot(x, y, 'b', 'LineWidth ', 1.5);

24 title('sech(x)');

25 xlabel('x');

26 ylabel('Amplitude ');

27 grid on;

28
29 subplot(3, 1, 2);

30 plot(x, yd, 'r', 'LineWidth ', 1.5);

31 title('True Derivative ');

32 xlabel('x');

33 ylabel('Amplitude ');

34 grid on;

35
36 subplot(3, 1, 3);

37 plot(x, real(ydcomputed), 'k', 'LineWidth ', 1.5);

38 title('Computed Derivative Using FFT');

39 xlabel('x');

40 ylabel('Amplitude ');

41 grid on;

42
43 legend('sech(x)', 'True Derivative ', 'Computed Derivative ', '

Location ', 'northeast ');

4.3 Tasks

1. Compute linear convolution of sequence {1,1} 100 times using FFT

Mathematical Formulation: The linear convolution of a sequence x[n] with itself can be ex-
pressed as:

y[n] = x[n]∗x[n]

Matlab code for this task is given below.

1 % Define the sequence

2 seq = [1, 1];

3 N = 100; % Number of repetitions

4 convolved_seq = conv(seq , ones(1, N));

5
6 % Display the result
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7 figure;

8 stem(convolved_seq);

9 title('Convolution of Sequence {1,1} Repeated 100 Times ');

10 xlabel('Sample Index');

11 ylabel('Amplitude ');

Output of the code is shown in Figure 4.1.

Figure 4.1: Linear convolution of sequence using FFT.

4.3.1 A die is thrown 100 times: compute probabilities of getting all possible sums
(100 to 600) using FFT

Mathematical Formulation: The characteristic polynomial for a single die throw can be ex-
pressed as:

P (z) =
(

1

6
z1 + 1

6
z2 + 1

6
z3 + 1

6
z4 + 1

6
z5 + 1

6
z6

)
Matlab code for this task is given below.

1 % Probability distribution for a single die

2 p_die = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6]; % Probability of each

face (1-6)

3 N = 100; % Number of throws

4
5 % Compute the characteristic polynomial of the die

6 char_poly = p_die;

7 for i = 2:N

8 char_poly = conv(char_poly , p_die);

9 end

10
11 % Get the probabilities for sums from 100 to 600

12 sums = 100: length(char_poly) + 99; % Adjust for the number of

throws

13 probabilities = char_poly; % Probabilities for sums from 100 to

600
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14
15 % Plot the results

16 figure;

17 bar(sums , probabilities);

18 title('Probabilities of Sums from 100 to 600');

19 xlabel('Sum');

20 ylabel('Probability ');

Output of the code is shown in Figure 4.2.

Figure 4.2: Probabilities for getting sum from 100 to 600.

4.3.2 A Coin is tossed 100 times: find the probability of getting more than 70 heads
using FFT

Mathematical Formulation: The probability generating function for a single coin toss can be
represented as:

P (z) = 0.5z +0.5z0

Matlab for this task is given below.

1 % Probability distribution for a single coin toss

2 p_coin = [0.5, 0.5]; % Probability of heads and tails

3 N = 100; % Number of tosses

4
5 % Compute the characteristic polynomial of the coin toss

6 char_poly = p_coin;

7 for i = 2:N

8 char_poly = conv(char_poly , p_coin);

9 end

10
11 % Find the probabilities for getting more than 70 heads

12 prob_more_than_70 = sum(char_poly (71: end)); % Sum probabilities

from 71 to 100

13
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14 disp(['Probability of getting more than 70 heads: ', num2str(

prob_more_than_70)]);

Output of the code is shown below.

Probability of getting more than 70 heads: 3.9251e-05

4.3.3 Using FFT show that the magnitude of ft of Gaussian function is again Gaus-
sian

Mathematical Formulation: The Fourier transform of a Gaussian function retains its form:

F {e−
x2

2σ2 } =σp2πe−
σ2ω2

2

Matlab code for this task is given below.

1 % Define parameters for the Gaussian function

2 mu = 0; % Mean

3 sigma = 1; % Standard deviation

4 x = linspace (-10, 10, 1024);

5 gaussian = (1/( sigma*sqrt (2*pi))) * exp(-0.5 * ((x - mu)/sigma)

.^2);

6
7 % Compute the FFT of the Gaussian

8 fft_gaussian = fft(gaussian);

9 magnitude = abs(fft_gaussian);

10
11 % Plot the results

12 figure;

13 subplot(2, 1, 1);

14 plot(x, gaussian);

15 title('Gaussian Function ');

16 xlabel('x');

17 ylabel('Amplitude ');

18
19 subplot(2, 1, 2);

20 freq = linspace (-512, 511, 1024); % Frequency axis

21 plot(freq , magnitude);

22 title('Magnitude of FFT of Gaussian Function ');

23 xlabel('Frequency ');

24 ylabel('Magnitude ');

Output of the code is shown in Figure 4.3.
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Figure 4.3: Magnitude of Gaussian distribution using FFT.

4.3.4 A Die is thrown 100 times: compute probability of getting the sum on the die
as more than 373

Matlab code for this task is given below.

1 % Reuse the characteristic polynomial from the earlier problem

2 % Compute the probabilities for sums from 100 to 600 (already

computed)

3 prob_more_than_373 = sum(char_poly (374: end)); % Sum

probabilities from 374 to 600

4
5 disp(['Probability of getting a sum more than 373: ', num2str(

prob_more_than_373)]);

Output of the code is

Probability of getting a sum more than 373: 0

2. Explain how to convert product of two 3-digit numbers into a convolution followed by a sum of
sequences

Given two numbers a = 123 and b = 456:

product(a,b) = a ·b =
m+n−1∑

k=0
ck ·10k

Using convolution:
ck = (a ∗b)[k]

To multiply the two numbers 123 and 456 using convolution, we will mimic the traditional place
value multiplication process.

(a) Define the Numbers: Represent 123 and 456 as digit sequences:

num1 = [1,2,3] (representing 123)

num2 = [4,5,6] (representing 456)
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(b) Reverse the Sequences: For convolution to align with traditional multiplication (starting
from the rightmost digit):

num1 = [3,2,1] (reverse of 123)

num2 = [6,5,4] (reverse of 456)

(c) Perform Convolution:

Using convolution:
convolution result = [3,2,1]∗ [6,5,4]

The convolution yields:
- Position 0: 3×6 = 18
- Position 1: 3×5+2×6 = 15+12 = 27
- Position 2: 3×4+2×5+1×6 = 12+10+6 = 28
- Position 3: 2×4+1×5 = 8+5 = 13
- Position 4: 1×4 = 4

Thus, the convolution result (without carry-overs) is:

product_digits = [18,27,28,13,4]

(d) Apply Carry-Over Operations:

- We need to add the carry-over values from each step:

• Position 0: 18 (write down 8, carry over 1)

• Position 1: 27+1 = 28 (write down 8, carry over 2)

• Position 2: 28+2 = 30 (write down 0, carry over 3)

• Position 3: 13+3 = 16 (write down 6, carry over 1)

• Position 4: 4+1 = 5 (write down 5)

(e) Final Result:

- Collecting the digits gives us:
123×456 = 56088

Matlab code for this task is given below.

1 % Define the two numbers as sequences

2 num1 = [1, 2, 3]; % 123

3 num2 = [4, 5, 6]; % 456

4
5 % Reverse the digit sequences for convolution

6 num1 = fliplr(num1);

7 num2 = fliplr(num2);

8
9 % Perform convolution to get the product

10 product = conv(num1 , num2);

11
12 % Handle carry and convert to the correct format

13 % Initialize the output vector with zeros

14 result = zeros(1, length(product));

15
16 % Add each value in the product to the result
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17 for i = 1: length(product)

18 result(i) = product(i);

19 end

20
21 % Carrying over

22 for i = 1: length(result)-1

23 if result(i) >= 10

24 result(i+1) = result(i+1) + floor(result(i) / 10); % Carry to

next digit

25 result(i) = mod(result(i), 10); % Keep current digit

26 end

27 end

28
29 % Display the result

30 disp(['Product of 123 and 456 is: ', num2str(fliplr(result))]);

Output of the code is shown below.

Product of 123 and 456 is: 5 6 0 8 8

3. Use the 2D Fourier transform for low-pass approximation and interpolation on a given image.
The 2D Fourier transform can be used to perform low-pass approximation and interpolation
through zero padding. The mathematical formulation for the 2D Fourier transform is:

F (u, v) =
Ï

f (x, y)e−2πi (ux+v y) d x d y

The low-pass filtering can be implemented using a Gaussian filter.

Matlab code for this task is given below.

1 % Load an image

2 name = 'lena'; % Change this to your image path

3 M = imread(name); % Load the image

4 M = rgb2gray(M); % Convert to grayscale

5 M = im2double(M); % Convert to double precision

6
7 % Compute the 2D FFT

8 fft_M = fft2(M);

9 fft_M_shifted = fftshift(fft_M); % Shift the zero frequency to

the center

10
11 % Create a low -pass filter

12 [n, m] = size(M);

13 d0 = 30; % Cut -off frequency

14 [X, Y] = meshgrid (1:m, 1:n);

15 D = sqrt((X - m/2).^2 + (Y - n/2) .^2);

16 H = double(D <= d0);

17
18 % Apply the low -pass filter

19 filtered_fft_M = fft_M_shifted .* H;

20
21 % Compute the inverse FFT

22 filtered_image = ifft2(ifftshift(filtered_fft_M));

23
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24 % Display the original and filtered images

25 figure;

26 subplot(1, 2, 1);

27 imshow(M, []);

28 title('Original Image ');

29
30 subplot(1, 2, 2);

31 imshow(real(filtered_image), []);

32 title('Filtered Image with Low -Pass Filter ');

Output of the code is shown in Figure 4.4.

Figure 4.4: Low pass filtering of an image using FFT.

RESULTS

1. Concept and applications of Fast Fourier Transform are revisited.

2. FFT is used to solve many classical problems in probability and algebra.

3. FFT filters are used for denoising applications.

Amrita School of Artificial Intelligence 55


	Assignment 80 Introduction to Discrete-Time Fourier Transform (DTFT) and FIR Filters
	Introduction to Discrete-Time Fourier Transform (DTFT)
	FIR filter design as an optimization problem

	Frequency Response of Filters
	Haar Wavelet
	Daubechies Wavelet
	Sparsity-based signal processing and L1 norm optimization
	Mathematical formulation


	Assignment 81 Applications of Discrete Fourier Transform
	Introduction
	Mathematical Representation
	Linear algebra perspective

	What does the dft really do?
	DFT interpretation of a signal
	Example: DFT basis for signal length 8
	Why is the central basis vector’s wave number 4?
	Geometrical insight of DFT basis
	Properties of DFT

	DFT Spectrum and FFT
	Example: DFT of a Simple Signal
	MATLAB Code Example
	A fast summary of key points

	Applications of DFT
	Spectral analysis
	Filter design
	Image Processing
	Modulation and demodulation
	Signal reconstruction

	Example: FIR Filter Design Using DFT
	Problem statement
	Steps

	Designing Optimal Filters for Denoising
	Mathematical steps for optimal filter design

	Denoising Signals Without Ground Truth
	Mathematical formulation for denoising

	Comparison with Other Transform Techniques
	DFT vs. Fast Fourier Transform (FFT)
	DFT vs. Wavelet Transform

	Tasks

	Assignment 82 Fibonacci Sequence and Its Applications in Optimization
	Introduction
	Generating the Fibonacci sequence
	Golden section ratio
	Matrix representation of the Fibonacci sequence
	Similarity matrix representation
	Eigenvalues of the Fibonacci matrix
	Relationship between 1 and 2
	Binet's formula

	Applications of Golden Section Ratio in Optimization, Signal Processing, and Machine Learning
	Optimization in signal processing
	Optimization in Machine Learning


	Assignment 83 Computing Derivative Using FFT 
	Introduction
	Sampling range
	Angular frequency values

	Finding the Derivative of  sech(x)  Using FFT
	Tasks
	A die is thrown 100 times: compute probabilities of getting all possible sums (100 to 600) using FFT
	A Coin is tossed 100 times: find the probability of getting more than 70 heads using FFT
	Using FFT show that the magnitude of ft of Gaussian function is again Gaussian
	A Die is thrown 100 times: compute probability of getting the sum on the die as more than 373



