
AMRITA VISHWA VIDYAPEETHAM
AMRITA SCHOOL OF ARTIFICIAL INTELLIGENCE

A Computational Study on Classification of Malignant
and Benign Tissue

A Project Report

Submitted by:
Siju K S
CB.AI.R4CEN24003
ASAI

Submitted to:
Prof. (Dr.) Soman K.P.

Professor & Dean
ASAI

In partial fulfillment of the requirements for the course work of the
P.hD. programme under Amrita School of Artificial Intelligence

NOVEMBER

2024





CERTIFICATE

This is to certify that the project report titled “A Computational Study on
Classification of Malignant and Benign Tissue” is the original work of Mr. Siju K. S.
and has been completed as part of the Ph.D. coursework at Amrita School of
Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore.

This project was conducted under my supervision and guidance, in alignment with
the objectives of the doctoral program.

I confirm that this work is a bona fide effort by Mr. Siju K. S., carried out with
diligence and in adherence to academic standards as part of his Ph.D. coursework.

Prof. Dr. Soman K. P.
Professor & Dean
Amrita School of Artificial Intelligence
Amrita Vishwa Vidyapeetham,
Coimbatore





DECLARATION

I, Mr. Siju K. S., hereby declare that the project report titled “A Computational Study
on Classification of Malignant and Benign Tissue” submitted in partial fulfillment of
the requirements for my Ph.D. coursework at the Amrita School of Artificial
Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore, is a record of my original
work under the guidance of Prof. Dr. Soman K. P., Professor & Dean, Amrita School of
Artificial Intelligence.
I further declare that this project has not been submitted, either in part or in full, for
any degree, diploma, fellowship, or other similar titles or recognitions in any other
institution or university.

Mr. Siju K. S.
Roll.No. CB.AI.R4CEN24003
Date: November 16, 2024





To all my Teachers

अज्ञानࣻतࣻमराۙࡺ ज्ञानाևन शलाकया।
चक्षुरु۟ीࣽलतं येन तैࡹ श्रीगुरवे नमः॥





Acknowledgments

I would like to extend my sincere thanks to Prof. Dr. Soman K. P., Professor and
Dean of Amrita School of Artificial Intelligence, for his unwavering support and
encouragement as I begin my doctoral journey. His motivating lectures and the
essential textbook, Machine Learning with SVM and Other Kernel Methods, have
significantly deepened my comprehension of fundamental machine learning
algorithms and their real-world applications.

I am especially grateful to my thesis advisor, Dr. Vipin V., whose guidance and
support have been invaluable. His encouragement to explore new ideas and
approaches in solving real-world problems has been a source of inspiration and
growth throughout my research.

My sincere thanks go to my Doctoral Committee Members, Dr. Vinith R.,
Dr. Mithun Kumar Kar, and Dr. Unnikrishnan P., for their creative suggestions and
continued encouragement, which have significantly shaped this work. I am also
thankful to Dr. V. Soumya, Amrita School of Artificial Intelligence, for her support
during my academic journey.

I extend my appreciation to Dr. Sudha T., Principal, Dr. M.D. Mathew, Dean
Research, and Dr. Lekha Susan Jacob, Head of the Department of Mathematics,
Saintgits College of Engineering (Autonomous), for their timely help and support,
enabling me to pursue this coursework at Amrita Vishwa Vidyapeetham.

Lastly, I am grateful to my friends and colleagues at Amrita—Mr. Vipin Das,
Mrs. Vandana Padmakumar, Mrs. Kavitha K., Mrs. Vrinda Alukkkal and all other
research scholars at CEN—who provided camaraderie and support.

To everyone who has contributed to this project, thank you for your guidance and
support in making this initial phase of my doctoral studies a rewarding experience.

Siju K S





Abstract

Breast cancer remains one of the leading causes of cancer-related deaths globally,
with over 2.3 million new cases reported in 2020 alone. The urgency for timely and
accurate diagnosis is critical, as early intervention significantly improves patient
outcomes. This study enhances breast cancer prediction by integrating classification
and clustering techniques using the UCI breast cancer dataset. Classification
models—including linear regression, logistic regression, and support vector
machines (SVM)—are initially applied to differentiate between benign and
malignant cases. The SVM is formulated as a convex optimization problem and
solved using MATLAB’s CVX solvers.
Subsequently, K-means clustering is employed to reveal data patterns, comparing
cluster assignments with actual diagnoses to identify misclassified cases and gain
insights into diagnostic accuracy. This combination of approaches not only boosts
predictive power but also enhances interpretability, offering a clearer understanding
of patient classifications.
The findings highlight the synergy between machine learning and traditional
diagnostic methods, paving the way for more informed and transparent healthcare
solutions.
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Chapter 1

Introduction

1.1 Background

Breast cancer remains a significant global health challenge, with millions of cases
reported annually, underscoring the critical need for advanced diagnostic tools that
facilitate early detection and timely treatment. Malignant BC cells spread to other
areas of the body if they are not detected in time, and patients frequently have to
undergo more involved, invasive therapies. Lately diagnosed patients frequently
have worse survival rates and may pass away shortly after receiving their diagnosis.
By 2050, the landscape of breast cancer is projected to change significantly. The
incidence rates for women are expected to rise to 59.63 cases per 100,000, marking
a substantial 32.13% increase from 2019. For men, the incidence is anticipated to
be much lower at 0.65 per 100,000, which is a modest increase of 1.74%.
In terms of mortality, forecasts indicate that the death rate for women will see a slight
uptick, reaching 16.42 per 100,000, which represents a 4.69% increase since 2019.
Conversely, the male breast cancer mortality rate is projected to decline significantly
to 0.26 per 100,000, a drop of 19.84%.
These statistics suggest that by 2050, the global burden of breast cancer could
result in 4.78 million diagnosed cases, leading to around 1.5 million deaths,
predominantly affecting women. This highlights the urgent need for continued
awareness, research, and support for those impacted by breast cancer. [1]. In this
study Xu et.al underscores the pressing global need for comprehensive cancer
prevention and control strategies, including reducing exposure, early screening,
and improving treatment, to effectively decrease the global burden of breast cancer.

1.2 Traditional Global Breast Cancer Screening and
Detection Methods

Depending on the resources available, different countries have different methods
for screening for breast cancer (BC). While industrialized nations often rely on
mammography, developing nations frequently employ clinical breast examinations
(CBE) and breast self-examinations (BSE). The ”gold standard” for detecting breast

1



Chapter 1. Introduction 1.3. Aims and Objectives

cancer is generally accepted to be the triple assessment test, which combines CBE,
radiological imaging (mammography and/or ultrasonography), and pathology
(FNAC or core needle biopsy). If at least one of these tests reveals malignancy, a BC
diagnosis is verified. Despite these methods, breast cancer incidence and mortality
remain significant. Conventional methods for diagnosing diseases such as breast
cancer typically utilize a linear model known as regression [2, 3]. These regression
techniques operate under the assumption of a direct linear correlation among
various risk factors for breast cancer; however, such relationships are often
non-linear. Consequently, reliance on regression could lead to inaccuracies in breast
cancer detection.
Conversely, machine learning methods do not necessitate linear relationships and
may provide a superior option for identifying breast cancer. Machine learning has
introduced innovative techniques for analyzing complex datasets, offering promising
avenues for enhancing classification tasks in the medical field.

1.3 Aims and Objectives

This project centers on the development of predictive and prescriptive models using
the UCI Breast Cancer Wisconsin dataset, which includes a diverse set of features
relevant to breast cancer diagnosis.

1.4 Various Stages in the Study

The primary objective of this study is to leverage both supervised and unsupervised
learning methods to improve breast cancer diagnosis. To achieve this, the research
process begins with comprehensive data preparation. The dataset is first structured
as a matrix, enabling essential preprocessing steps, including data cleaning, outlier
detection, and feature scaling. Outliers are detected using the Interquartile Range
(IQR) method, and visualizations are employed to provide a detailed summary of
the dataset’s numerical features. This step ensures that the data is refined for robust
model development and accurate analysis.
Following preprocessing, the study advances to the implementation of supervised
classification models aimed at predicting the likelihood of a sample being benign or
malignant. The analysis commences with linear and logistic regression models,
utilizing matrix operations and the sigmoid function for binary classification. The
methodology then extends to Support Vector Machines (SVM), with the model
formulated as a convex optimization problem solved via eigenvalue decomposition
of the dual Lagrangian function, and further optimized using MATLAB’s CVX
solvers. These models are evaluated based on accuracy, sensitivity, specificity, and
F1-score, identifying the model best suited for medical diagnosis.
After establishing reliable classification models, the research explores K-means
clustering as an unsupervised approach to uncover additional data patterns.
Clustering serves as a complementary tool to the classification models by examining
the structure of the dataset, comparing cluster assignments to actual diagnoses.

2



1.4. Various Stages in the Study Chapter 1. Introduction

This analysis provides insight into potential misclassifications and helps interpret
the distribution of cases across clusters, offering a more nuanced understanding of
breast cancer diagnoses. The clustering results supplement the classification
models, making the predictions more interpretable and enabling a prescriptive
approach that may aid clinicians in determining the severity and treatment
prioritization for patients.
This project aims to not only enhance diagnostic accuracy but also contribute to
explainable machine learning in medical diagnostics. By adopting a methodical
approach grounded in linear algebra and optimization combining classification and
clustering techniques, this research seeks to explore the potential for improved
diagnostic accuracy in breast cancer detection, ultimately contributing to
advancements in medical analytics and patient care.
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Chapter 2

Literature Survey

The application of machine learning (ML) in breast cancer prediction has grown
significantly, especially with studies employing the Wisconsin Breast Cancer
Diagnostic (WBCD) dataset since early 2020. A key study by Street et al. used
interactive image processing and machine learning to diagnose breast cancer,
implementing a technique known as “snakes,” or deformable splines, which
identified cell nuclei in fine needle aspirate (FNA) images. Through this method,
ten nuclear features, including radius, area, and compactness, were extracted and
used in a classifier based on the Multi-surface Method (MSM). This approach
achieved an accuracy of 97% for distinguishing between benign and malignant
tumors using key features like worst area and mean texture [4]. This study
demonstrated the feasibility of nuclear feature extraction combined with ML for
high-accuracy breast cancer diagnosis. Another approach discussed is the Rule
Induction Algorithm based on approximate classification, achieving an accuracy of
94.99% [5]. This method generates a set of rules from the training data that can be
used to classify new instances. The rules are typically expressed in the form of
“if-then” statements. Combining Linear Discriminant Analysis (LDA) with Neural
Networks (NN) is yet another method explored in the source. This combined
approach reached an impressive accuracy of 96.8% [6]. LDA seeks to find a linear
combination of features that maximizes the separation between classes, while
neural networks are powerful models inspired by the structure of the human brain
that can learn complex non-linear relationships in the data.

Zaki’s comprehensive bibliometric analysis (shown in Table 2.1)highlights this
trend, mapping the diverse ML algorithms applied in breast cancer research,
including Bayesian networks, Radial Basis Function (RBF) networks, Support
Vector Machines (SVM), and Decision Trees (DT) [7]. Early work primarily
explored these algorithms individually to assess predictive capabilities, providing a
foundation for the current use of ensemble and hybrid models that yield improved
accuracy. The research keyword analysis is represented as a network diagram as
shown in Figure 2.1.
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Chapter 2. Literature Survey

Figure 2.1: Author keywords co-occurrence network of breast cancer prediction using
machine learning-related publications from 2015 to 2019.

Since 2019, researchers have expanded their approaches beyond the WBCD dataset,
incorporating various datasets like the Digital Database for Screening Mammography
(DDSM), the Federal Fluminense University Hospital Mammography Dataset, and
data from Zhejiang Cancer Hospital. This variety has facilitated the testing of a
broad range of models—from classical algorithms like Logistic Regression (LR) and
k-Nearest Neighbors (KNN) to advanced Convolutional Neural Networks (CNNs)
and multilayer perceptron (MLP) networks. SVM has emerged as a highly effective
approach, achieving accuracies up to 97.2% on the WBCD dataset, underscoring its
robustness in cancer classification tasks [8] [9].
Khairunnahar et.al mentions the use of Decision Tree methods, specifically the C4.5
algorithm, which attained an accuracy of 94.74% [10]. The latest studies have
introduced innovative techniques to improve breast cancer prediction accuracy and
model transparency. For instance, the BOAALO hybrid feature selection method
significantly enhances diagnostic reliability, while two-phase deep learning models
incorporating random forests boost prognosis prediction, achieving a 5.1% increase
in survival sensitivity estimation [11]. Some studies also emphasize early detection
via polygenic risk scores (PRSs) tailored for Asian populations, demonstrating the
importance of population-specific calibrations in ML models [12].
Alongside predictive models, recent research emphasizes Explainable AI (XAI)
frameworks to enhance interpretability and facilitate clinical acceptance. A
comprehensive review of XAI literature confirms the growing priority for
transparency and model explainability, which are crucial for real-world applicability
[13]. Many studies apply classification matrices across key factors relevant to
breast cancer, benchmarking model effectiveness and robustness. Additionally,
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recent efforts to incorporate stacking-based ensemble learning and rigorous
hyperparameter tuning have improved both predictive accuracy and computational
speed, demonstrating potential for deployment in clinical settings [14]. A recent
2022 study developed a digital breast tomosynthesis (DBT) risk model specifically
aimed at predicting late-stage and interval breast cancers that may arise after an
initial negative screening. This model shows promise in supporting clinical
decision-making by enhancing early identification and prioritizing high-risk cases,
which could improve patient outcomes through timely intervention [15].
In addition to prediction, the proposed study contributes by proposing a
prescriptive ML model capable of assessing breast cancer severity, which enables
prioritizing cases for immediate treatment and guiding follow-up diagnostic
procedures. This model extends beyond simple classification, offering a multi-level
assessment to support clinicians in determining optimal treatment pathways based
on cancer severity. This prioritization capability addresses a critical gap in current
research, moving ML applications from mere diagnostic aids toward active clinical
decision-making tools that integrate prediction and treatment guidance. By offering
both predictive and prescriptive insights, this study aims to enhance the utility of
ML in breast cancer care and facilitate more efficient, patient-centered outcomes on
a global scale.

7
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Table 2.1: Summary of Machine Learning Studies on Breast Cancer Dataset

Reference Dataset Country* Sampling strategy ML Algorithm Summary measure (in %)
Hernández-Julio et al.[16] BCCD Colombia 10-fold CV Clusters + pivot table 95.90 (Accuracy)
Singh(2019)[17] BCCD India 67-33 training-testing K-NN 92.11 (Accuracy)
Polat and Senturk (2018)[18] BCCD Turkey 10-fold CV AdaBoost 91.37 (Accuracy)
Akben (2019) [19] BCCD Turkey 10-fold CV DT 90.52 (Accuracy)
Islam and Poly (2019) [20] BCCD Taiwan (China) 10-fold CV K-NN 86.00 (Accuracy)
Araújo et al. (2019) [21] BCCD Brazil 70-30 training-testing, 10-fold CV NN 80.67 (Accuracy)
Aslan et al. (2018) [22] BCCD Turkey 80-20 training-testing ELM 80.00 (Accuracy)
Livieris (2018) [23] BCCD Greece 10-fold CV K-NN 62.00 (Accuracy)
Patŕıcio et al.(2018) [24] BCCD Portugal MCCV SVM 87.00, 91.00 (95% CI for AUC)
Li and Chen[25] BCCD United Kingdom 70-30 training-testing RF 78.50 (AUC)
Hung et al.(2018) [26] BCCD Vietnam 80-20 training-testing DT 82.00 (F1 score)
Abdar and Makarenkov (2019) [27] WBCD Canada 50-50 training-testing CWV-BANN-SVM 100.00 (Accuracy)
Elgedawy (2017) [28] WBCD Saudi Arabia 75-25 training-testing RF 99.42 (Accuracy)
Hernández-Julio et al. (2019) [16] WBCD Colombia 10-fold CV Clusters + pivot table 99.40 (Accuracy)
Chaurasia et al. (2017) [29] WBCD India Stratified 10-fold CV NB 97.36 (Accuracy)
Asri et al.(2016) [30] WBCD Morocco 10-fold CV SVM 97.13 (Accuracy)
Alzubaidi et al. (2016) [31] WBCD United Kingdom LOOCV SVM (quadratic-linear kernel), K-NN 97.00 (Accuracy), 97.00 (Accuracy)
Islam et al. (2017) [32] WBCD Bangladesh 10-fold CV SVM 97.00 (Accuracy)
Chaurasia and Pal (2018) [33] WBCD India 10-fold CV SMO (SVM) 96.20 (Accuracy)
Bazazeh and Shubair[34] WBCD United Arab Emirates 10-fold CV RF 99.90 (AUC)
Li and Chen[35] WBCD United Kingdom 70-30 training-testing RF 98.90 (AUC)
Anastraj et al. (2021) [36] WBCD India 80-20 training-testing BN,RBF 97.42(Accuracy)
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Chapter 3

Methodology

This chapter delineates the methodological framework employed in this project,
focusing on the UCI Breast Cancer Wisconsin dataset as the basis for model
development. Initially, an exploration of the dataset was conducted to understand
its structure and key characteristics. Essential statistical analyses were performed to
summarize the data, including identifying outliers and assessing feature
relationships. Following this, data preprocessing techniques were applied to ensure
the dataset’s quality, including normalization and outlier detection. Subsequently, a
series of classification models—namely linear regression, logistic regression, and
support vector machines—were implemented using matrix operations grounded in
linear algebra and optimization principles. This systematic approach not only
facilitated the development of robust predictive models but also enhanced the
overall understanding of the data’s patterns and distributions.

3.1 Dataset Summary

The UCI Breast Cancer Wisconsin dataset, sourced from the University of California,
Irvine (UCI) Machine Learning Repository, is a widely used dataset for breast
cancer diagnosis research. It comprises 569 instances, each representing a unique
patient, along with 32 attributes that provide critical information regarding tumor
characteristics. The dataset is structured as follows:

• ID: A unique identifier for each patient.

• Diagnosis: A categorical variable indicating the tumor classification, with two
possible values:

– M: Malignant (cancerous)

– B: Benign (non-cancerous)

• Features: The dataset contains 30 continuous numerical attributes, derived
from digitized images of fine needle aspirate (FNA)1 of breast mass. These
features represent various measurements related to the tumors, including:

1Fine Needle Aspiration (FNA) is a minimally invasive technique for collecting cytological samples

9



Chapter 3. Methodology 3.2. Basic Data Analysis

– radius mean, texture mean, perimeter mean, area mean,
smoothness mean, and others.

Each feature is calculated based on the mean, standard error, or worst (largest)
value, offering a comprehensive view of the tumor’s characteristics.

• Data Format: The dataset is provided in CSV format, making it easily
accessible for data analysis and modeling tasks.

The primary objective of this dataset is to aid in the development of machine
learning models capable of accurately predicting the diagnosis of breast cancer
based on the provided features. This dataset has become a benchmark for
evaluating various classification algorithms and serves as an essential resource for
researchers and practitioners in the field of medical diagnostics.

3.2 Basic Data Analysis

This section outlines the primary analyses conducted on the UCI Breast Cancer
Wisconsin dataset to understand its characteristics and prepare for model
development.

3.2.1 Class Distribution

The class distribution of the ‘diagnosis‘ variable was examined, categorizing
instances as either malignant (M) or benign (B).

Class Count
Benign (B) 357

Malignant (M) 212

Table 3.1: Class distribution of the UCI Breast Cancer Wisconsin dataset.

The class distribution table shows 357 instances classified as benign (B) and 212
as malignant (M) in the UCI Breast Cancer Wisconsin dataset. This results in an
approximate distribution of 62.7% benign and 37.3% malignant instances.
The observed class imbalance may influence the performance of classification
algorithms, potentially leading to a bias towards the benign class. Therefore, it is
essential to implement strategies during model development to ensure reliable
identification of malignant cases. The lower representation of malignant instances
necessitates the use of effective feature extraction and validation techniques to
enhance predictive accuracy.

from suspicious breast lesions using a thin needle under imaging guidance. This procedure
provides rapid diagnoses and high-quality samples, facilitating the extraction of critical features for
differentiating between benign and malignant cells, thereby enhancing cancer prediction models.

10



3.2. Basic Data Analysis Chapter 3. Methodology

3.2.2 Summary Statistics

Summary statistics, including mean, median, standard deviation, minimum,
maximum, and interquartile range (IQR), were calculated for each numerical
feature. These statistics provide insights into the dataset’s central tendencies and
variations.

Table 3.2: Summary Statistics of Numerical Features

Feature Mean Median Q1 Q2 Q3 IQR Min Max SD
radius mean 14.13 13.37 11.70 13.37 15.80 4.10 6.98 28.11 3.52
texture mean 19.29 18.84 16.17 18.84 21.80 5.63 9.71 39.28 4.30
perimeter mean 91.97 86.24 75.13 86.24 104.15 29.02 43.79 188.50 24.30
area mean 654.89 551.10 420.18 551.10 784.15 363.98 143.50 2501.00 351.91
smoothness mean 0.10 0.10 0.09 0.10 0.11 0.02 0.05 0.16 0.01
compactness mean 0.10 0.09 0.06 0.09 0.13 0.07 0.02 0.35 0.05
concavity mean 0.09 0.06 0.03 0.06 0.13 0.10 0.00 0.43 0.08
concave points mean 0.05 0.03 0.02 0.03 0.07 0.05 0.00 0.20 0.04
symmetry mean 0.18 0.18 0.16 0.18 0.20 0.03 0.11 0.30 0.03
fractal dimension mean 0.06 0.06 0.06 0.06 0.07 0.01 0.05 0.10 0.01
radius se 0.41 0.32 0.23 0.32 0.48 0.25 0.11 2.87 0.28
texture se 1.22 1.11 0.83 1.11 1.47 0.64 0.36 4.88 0.55
perimeter se 2.87 2.29 1.61 2.29 3.36 1.76 0.76 21.98 2.02
area se 40.34 24.53 17.85 24.53 45.24 27.39 6.80 542.20 45.49
smoothness se 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.03 0.00
compactness se 0.03 0.02 0.01 0.02 0.03 0.02 0.00 0.14 0.02
concavity se 0.03 0.03 0.02 0.03 0.04 0.03 0.00 0.40 0.03
concave points se 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.05 0.01
symmetry se 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.08 0.01
fractal dimension se 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
radius worst 16.27 14.97 13.01 14.97 18.79 5.78 7.93 36.04 4.83
texture worst 25.68 25.41 21.07 25.41 29.76 8.68 12.02 49.54 6.15
perimeter worst 107.26 97.66 84.10 97.66 125.53 41.42 50.41 251.20 33.60
area worst 880.58 686.50 514.97 686.50 1085.00 570.03 185.20 4254.00 569.36
smoothness worst 0.13 0.13 0.12 0.13 0.15 0.03 0.07 0.22 0.02
compactness worst 0.25 0.21 0.15 0.21 0.34 0.19 0.03 1.06 0.16
concavity worst 0.27 0.23 0.11 0.23 0.38 0.27 0.00 1.25 0.21
concave points worst 0.11 0.10 0.06 0.10 0.16 0.10 0.00 0.29 0.07
symmetry worst 0.29 0.28 0.25 0.28 0.32 0.07 0.16 0.66 0.06
fractal dimension worst 0.08 0.08 0.07 0.08 0.09 0.02 0.06 0.21 0.02

The summary statistics table provides an overview of the numerical features
extracted from the dataset.
- Mean values indicate the average size and characteristics of the breast tumors,
with the highest average observed for the area feature at 654.89. The perimeter and
radius also show considerable averages of 91.97 and 14.13, respectively, reflecting
the size and dimensions of the tumors.
- Median values closely follow the means, confirming the general distribution
without extreme outliers. For instance, the median radius is 13.37, suggesting that
half the tumors have a radius smaller than this value.
- Interquartile range (IQR) highlights the variability, with the area feature
exhibiting the highest IQR of 363.98, indicating substantial differences in tumor
sizes.
- The minimum and maximum values indicate the range of each feature. For
instance, the area varies from 143.50 to 2501.00, demonstrating significant size
diversity among the tumors.
- The standard deviation (SD) values reflect the spread of the data points around
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the mean, with features such as perimeter (SD = 24.30) and area (SD = 351.91)
exhibiting higher variability compared to features like smoothness mean (SD =
0.01), which is more consistent across observations.
These statistics are crucial for understanding the dataset’s characteristics and inform
the subsequent steps in feature selection and model training.

3.2.3 Correlation Analysis

The Pearson correlation coefficient was computed for pairs of numerical variables
to identify strong correlations. A correlation matrix was created to visualize
relationships between features, guiding feature selection for classification. Figure
3.1 illustrate the correlation between the 30 features in the dataset
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Figure 3.1: Correlation matrix of various features in the dataset

In order to identify the most significant features contributing to breast cancer
diagnosis, a correlation analysis was conducted between each feature and the
target variable (diagnosis). This statistical method allows us to quantify the
strength of the linear relationship between the input features and the target class,
which in this case helps to identify the features most strongly associated with
distinguishing benign from malignant tumors.
The table below presents the correlation coefficients for each feature:
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Table 3.3: Correlation Coefficients of Features with Diagnosis

Feature Correlation
radius mean 0.73
texture mean 0.42
perimeter mean 0.74
area mean 0.71
smoothness mean 0.36
compactness mean 0.60
concavity mean 0.70
concave points mean 0.78
symmetry mean 0.33
fractal dimension mean -0.01
radius se 0.57
texture se -0.01
perimeter se 0.56
area se 0.55
smoothness se -0.07
compactness se 0.29
concavity se 0.25
concave points se 0.41
symmetry se -0.01
fractal dimension se 0.08
radius worst 0.78
texture worst 0.46
perimeter worst 0.78
area worst 0.73
smoothness worst 0.42
compactness worst 0.59
concavity worst 0.66
concave points worst 0.79
symmetry worst 0.42
fractal dimension worst 0.32

Based on the correlation analysis, the three features most strongly correlated with
the target variable (diagnosis) are ’concave points worst’, ’perimeter worst’, and
’concave points mean’. These features have correlation values of 0.79, 0.78, and
0.78, respectively. The high correlation values indicate a strong positive
relationship with the diagnosis, suggesting that larger values of these features are
typically associated with malignant tumors.
Statistical interpretations of these results highlight that shape-related features,
particularly those associated with concave points and perimeter, are critical in
differentiating between benign and malignant tumors. These findings provide
strong justification for focusing on these features in predictive modeling efforts.
Visualizing the distribution of these features across benign and malignant classes
further demonstrates their significance in separating the two groups. Distribution of
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Figure 3.2: Distribution of top three highly correlated features

these three top features are shown in Figure 3.2.
Varition Inflation Factor score of the feature set is shown in Table 3.4.

3.2.4 Multicollinearity of feature

The Variation Inflation Factor (VIF) is a critical metric for evaluating multicollinearity
among predictor variables, particularly in the context of linear regression and its
extensions to classification models. A VIF score quantifies how much the variance of
a regression coefficient is inflated due to linear dependence among the predictors. In
general, a VIF score above 5 or 10 indicates problematic multicollinearity, warranting
attention and potential remedial action.
Table 3.4 of VIF scores for various features reveals significant disparities, with
several features exhibiting alarmingly high values. For instance, the VIF score for
radius mean (3806.12) and perimeter mean (3786.40) suggests extreme
multicollinearity, indicating that these variables are heavily interrelated. Such high
VIF values raise concerns about the stability of coefficient estimates and their
interpretability in predictive modeling.
Conversely, features like symmetry mean (4.22) and fractal dimension mean

(15.76) present a mixed picture. While symmetry mean indicates acceptable
multicollinearity levels, the higher score of fractal dimension mean underscores a
need for careful consideration in model design. Features with high VIF scores can
obscure the unique contributions of individual predictors, potentially leading to
overfitting and unreliable model performance.
Given these observations, reliance on linear models— especially logistic
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regression— may be inappropriate due to the instability caused by multicollinearity.
To enhance model robustness, practitioners should consider techniques such as
feature selection to mitigate multicollinearity’s adverse effects or explore
regularization methods to achieve more reliable predictive outcomes. Thus,
addressing the issues highlighted by the VIF scores will be crucial in constructing an
effective and interpretable classification model.

Table 3.4: Variation Inflation Factor (VIF) Scores of Features

Sl.No. Feature VIF Score
1 radius mean 3806.12
2 texture mean 11.88
3 perimeter mean 3786.40
4 area mean 347.88
5 smoothness mean 8.19
6 compactness mean 50.51
7 concavity mean 70.77
8 concave points mean 60.04
9 symmetry mean 4.22
10 fractal dimension mean 15.76
11 radius se 75.46
12 texture se 4.21
13 perimeter se 70.36
14 area se 41.16
15 smoothness se 4.03
16 compactness se 15.37
17 concavity se 15.69
18 concave points se 11.52
19 symmetry se 5.18
20 fractal dimension se 9.72
21 radius worst 799.11
22 texture worst 18.57
23 perimeter worst 405.02
24 area worst 337.22
25 smoothness worst 10.92
26 compactness worst 36.98
27 concavity worst 31.97
28 concave points worst 36.76
29 symmetry worst 9.52
30 fractal dimension worst 18.86

3.2.5 Data Preprocessing

Based on the analysis findings, preprocessing steps were taken to prepare the dataset
for modeling. This included addressing missing values, normalizing features, and
handling outliers to enhance data quality.
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3.2.6 IQR-Based Approach for Outlier Detection

The Interquartile Range (IQR) is a measure of statistical dispersion, which is the
spread of the middle 50% of a dataset. It is calculated as the difference between the
third quartile (Q3) and the first quartile (Q1), where:

IQR = Q3−Q1

The first quartile (Q1) represents the 25th percentile of the data, while the third
quartile (Q3) represents the 75th percentile. The IQR is particularly useful for
identifying outliers in datasets, as it is resistant to extreme values (unlike the
standard deviation). Outliers are typically defined as data points that fall below
Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. These thresholds, often referred to as
”fences,” capture most of the central data, and any points outside this range are
considered outliers.

The IQR-based approach is widely used in datasets where the distribution is skewed
or does not follow a normal distribution, making it more robust compared to the
z-score method. The use of 1.5 times the IQR to determine outliers is a common rule
of thumb, although this factor can be adjusted based on the specific characteristics of
the data. By identifying and potentially removing or investigating these outliers, it is
possible to improve the accuracy and performance of statistical models and reduce
bias introduced by extreme values.

• Lower Bound: Q1− 1.5× IQR

• Upper Bound: Q3 + 1.5× IQR

Data points outside this range are flagged as potential outliers.

There are many outliers in almost all the features in the dataset. A square root
transformation is used on features with terrible number of outliers (area se,
perimeter se, radius se,area mean, area worst, fractal dimension worst). Result of
the outlier removal is shown in Table 3.5.
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Table 3.5: Outlier Status Before and After Square Root Transformation

Feature Outliers Before Outliers After
Radius Mean 13 0
Texture Mean 7 0
Perimeter Mean 13 0
Area Mean 23 12
Smoothness Mean 6 0
Compactness Mean 15 0
Concavity Mean 17 0
Concave Points Mean 9 0
Symmetry Mean 15 0
Fractal Dimension Mean 15 0
Radius SE 36 19
Texture SE 18 0
Perimeter SE 36 21
Area SE 61 30
Smoothness SE 28 0
Compactness SE 26 0
Concavity SE 22 0
Concave Points SE 18 0
Symmetry SE 27 0
Fractal Dimension SE 26 0
Radius Worst 16 0
Texture Worst 4 0
Perimeter Worst 13 0
Area Worst 31 15
Smoothness Worst 4 0
Compactness Worst 16 0
Concavity Worst 11 0
Concave Points Worst 0 0
Symmetry Worst 21 0
Fractal Dimension Worst 21 14

3.2.7 Data Visualization

To analyze the impact of the square root transformation and identify potential
outliers, a box plot was created for the selected features. The box plot (Figure 3.3)
illustrates the distribution of features, including area se, perimeter se, radius se,
area mean, area worst, and fractal dimension worst.
In the box plot, the central box represents the interquartile range (IQR), with the line
indicating the median. Whiskers extend to the smallest and largest values within 1.5
times the IQR, while points outside this range are marked as potential outliers.
The analysis reveals notable outliers in features such as area se, perimeter se, and
radius se, necessitating further investigation. This visualization aids in
understanding the effects of the square root transformation and guides subsequent
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data preprocessing steps.
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Figure 3.3: Box plot showing the distribution of features post-square root
transformation, highlighting potential outliers.

3.3 Feature Selection

The correlation analysis reveals several features with significant positive
correlations to tumor malignancy, particularly those exceeding a correlation
coefficient of 0.75. Notable features include Concave Points Worst (0.79), Area
Worst (0.78), and Perimeter Worst (0.78), all of which exhibit strong relationships
with malignancy. These features, primarily related to tumor size and shape, are
crucial in distinguishing between malignant and benign tumors. The low p-values
(e.g., 1.97 × 10−124 for Concave Points Worst) further affirm their statistical
significance.
Selecting these high-correlation features for model development enhances
predictive accuracy in classifying tumors. Their clinical relevance, derived from
strong statistical associations, supports their role in diagnostic processes. Thus,
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incorporating these features into logistic regression models can potentially improve
classification outcomes, aiding in timely and accurate patient treatment decisions.

Table 3.6: Correlation Analysis of Features with Tumor Malignancy

Feature ρ P-Value
Concave Points Worst 0.79 1.97× 10−124

Area Worst 0.78 1.23× 10−119

Perimeter Worst 0.78 5.77× 10−119

Concave Points Mean 0.78 7.10× 10−116

Radius Worst 0.78 8.48× 10−116

Perimeter Mean 0.74 8.44× 10−101

Area Mean 0.73 3.45× 10−97

Radius Mean 0.73 8.47× 10−96

Area SE 0.71 9.52× 10−89

Concavity Mean 0.70 9.97× 10−84

Concavity Worst 0.66 2.46× 10−72

Perimeter SE 0.63 3.20× 10−64

Radius SE 0.63 1.77× 10−63

Compactness Mean 0.60 3.94× 10−56

Compactness Worst 0.59 7.07× 10−55

Texture Worst 0.46 1.08× 10−30

Smoothness Worst 0.42 6.58× 10−26

Symmetry Worst 0.42 2.95× 10−25

Texture Mean 0.42 4.06× 10−25

Concave Points SE 0.41 3.07× 10−24

Smoothness Mean 0.36 1.05× 10−18

Symmetry Mean 0.33 5.73× 10−16

Fractal Dimension Worst 0.32 2.47× 10−15

Compactness SE 0.29 9.98× 10−13

Concavity SE 0.25 8.26× 10−10

Fractal Dimension SE 0.08 0.063
Smoothness SE -0.07 0.110
Fractal Dimension Mean -0.01 0.760
Texture SE -0.01 0.843
Symmetry SE -0.01 0.877

Chi-square tests are commonly used for evaluating the independence between
categorical variables or for assessing goodness of fit between observed and
expected distributions. In particular, testing independence can help determine
whether two or more variables are dependent across populations, allowing one to
estimate the other. However, when applying Chi-square tests to this dataset, the
results were inconclusive, likely due to the continuous nature of the transformed
variables and the limitations of the Chi-square method in handling such data. These
experiments consistently produced unreliable test statistics and p-values,
highlighting the inadequacy of Chi-square for this feature selection task.
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As a more suitable alternative, Pearson correlation analysis was employed to
measure the linear relationship between the numerical features and the binary
target variable. This method identified features with the strongest associations,
where top features such as ”Concave Points Worst,” ”Area Worst,” ”Perimeter
Worst”, ”Concave Points Mean” and ”Radius Worst” showed high correlation values
(above 0.75). These features are derived from basic measurements like radius,
area, and perimeter but encapsulate more complex geometric properties of the
tumors. Thus, the correlation analysis not only simplifies the feature selection
process but also highlights the significance of derived features, making it an
effective choice for this dataset. Selected features for developing machine learning
models for the breast cancer data set is shown in Table 3.7.

Table 3.7: Selected features with correlation coefficients and their target association

Feature Correlation P-value
Concave Points Worst 0.79 0
Area Worst 0.78 0
Perimeter Worst 0.78 0
Concave Points Mean 0.78 0
Radius Worst 0.78 0

3.4 Machine Learning Algorithms

Machine Learning (ML) algorithms, particularly supervised learning methods, are
widely applied in predictive modeling. Among them, Logistic Regression, Support
Vector Machines (SVMs), Decision Trees, and Random Forests are commonly
used for classification tasks.
Logistic Regression is a statistical method that models the probability of a binary
outcome based on one or more input features. It is effective for problems where
the relationship between features and the target variable is approximately linear.
Its simplicity, interpretability, and ability to provide probabilistic outputs make it a
popular choice for binary classification.
Support Vector Machines (SVMs) work by finding a hyperplane that best
separates the data into different classes. SVMs can handle both linear and
non-linear classification tasks, using kernel functions to transform the data when
needed. They are particularly useful when the data is not linearly separable and
perform well in high-dimensional spaces.
Decision Trees are flowchart-like structures where decisions are made at each node,
based on feature values. They are easy to interpret and can handle both categorical
and numerical data. However, decision trees can be prone to overfitting, especially
when deep trees are built, which capture noise rather than underlying patterns.
Random Forests improve on decision trees by using an ensemble approach. Multiple
decision trees are built on random subsets of the data, and the final prediction is
made based on the majority vote of these trees. This method reduces overfitting,
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improves generalization, and typically yields better accuracy than single decision
trees.
In this project, these algorithms can be used to model the relationship between
selected features and the target variable, offering robust performance across a
range of classification problems.
A general structure of a Machine Learning Classification process is shown in Figure
3.4.

Figure 3.4: Machine learning classification process

The selection of these algorithms for the current project is based on their ability to
handle both linear and non-linear relationships within the dataset. Logistic
Regression offers a simple yet powerful baseline, while SVMs can efficiently
manage more complex patterns. Decision Trees provide interpretability, allowing
for easier understanding of feature importance, and Random Forests enhance
model performance through ensemble learning, reducing the risk of overfitting.
These algorithms collectively offer a robust toolkit for accurately classifying the
data and handling the nuances of feature interaction in the project.

3.5 Terminologies Used in Machine Learning Model
Development

Dataset

A dataset is a collection of data that contains features (input variables) and labels
(target variable). In supervised learning, the dataset is used to train the model, with
features representing the input data and labels indicating the desired output.
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Train-Test Split

Train-test split is a technique used to evaluate the performance of a machine learning
model. The dataset is divided into two subsets: the training set, which is used to
train the model, and the test set, which is used to assess the model’s performance
on unseen data. A common split ratio is 80:20, where 80% of the data is used for
training and 20% for testing.

Weights (w) and Bias (b)

Weights are coefficients assigned to each feature in the model, determining the
influence of each feature on the prediction. The bias term is a constant added to the
output of the model to adjust the prediction independently of the input features.
Together, weights and bias form the parameters of the logistic regression model.

Learning Rate (α)

The learning rate is a hyperparameter that controls how much to change the model
parameters during each iteration of gradient descent. A smaller learning rate may
lead to slower convergence, while a larger learning rate can result in overshooting
the optimal solution.

Iterations (T )

Iterations refer to the number of times the gradient descent algorithm updates the
weights and bias. More iterations can improve model performance, but excessively
high values may lead to overfitting or unnecessary computation.

Gradient Descent

Gradient descent is an optimization algorithm used to minimize the cost function by
iteratively adjusting the model parameters (weights and bias) in the direction of the
negative gradient of the cost function. This process continues until convergence is
achieved or a predetermined number of iterations is reached.

K-Fold Cross-Validation

K-fold cross-validation is a technique used to assess the performance of a model by
splitting the training data into k subsets (folds). The model is trained on k − 1 folds
and validated on the remaining fold. This process is repeated k times, with each fold
used as the validation set once. The results are then averaged to provide a more
reliable estimate of model performance.
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Validation Error

Validation error is the measure of how well a machine learning model performs
on unseen data during the validation phase. It provides insight into the model’s
generalization capability and is crucial for detecting overfitting.

Performance Metrics

Performance metrics are quantitative measures used to evaluate the effectiveness of
a machine learning model. Common metrics for classification tasks include accuracy,
precision, recall, and F1-score, which provide insights into the model’s predictive
capabilities.
In assessing the skill of a logistic regression classifier, several performance measures
are crucial for a comprehensive evaluation. Accuracy reflects the overall
correctness of the model’s predictions, but it can be misleading in imbalanced
datasets. Sensitivity (or Recall) measures the model’s ability to correctly identify
positive instances, making it essential in situations where missing positive cases is
costly (e.g., detecting diseases). Specificity assesses the ability to correctly classify
negative instances, which is important in avoiding false positives. The Area Under
the ROC Curve (AUC-ROC) provides a more holistic measure by summarizing the
trade-off between sensitivity and specificity across different thresholds. A higher
AUC indicates that the model performs well in distinguishing between positive and
negative classes. Together, these metrics provide insights into the model’s strengths
and weaknesses, helping assess how well it generalizes and handles different types
of classification errors.

3.6 Logistic Regression Classifier

The binary logistic regression model is employed to predict a binary response
based on one or more predictor variables (features). Logistic regression assesses the
relationship between a categorical dependent variable and one or more
independent variables by estimating probabilities through a logistic function, which
represents the cumulative logistic distribution. The term ”regression” signifies that
we are fitting a linear model to the feature space, which can consist of both
categorical and continuous variables. Logistic regression adopts a probabilistic
approach to classification, providing a means to model the likelihood of the
outcome being one of the two categories.

Linear Regression Model as a Starting Point

Logistic regression extends the principles of linear regression, where the objective is
to predict a continuous outcome y as a linear combination of input features X:

y = Xβ + ϵ
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Here, X ∈ Rn×p is the matrix of feature vectors (with n samples and p features),
β ∈ Rp is the vector of model parameters (coefficients), and ϵ denotes the error
term. For a new observation xi, the predicted output is:

ŷi = x⊤
i β

However, in binary classification, predicting a continuous value is not suitable.
Instead, we need to transform the output into a range between 0 and 1 to represent
probabilities.

From Probability to Odds and Log-Odds

In logistic regression, we model the probability that the output yi equals 1 as follows:

P (yi = 1|xi) = σ(x⊤
i β)

where σ(z) is defined as the sigmoid function:

σ(z) =
1

1 + e−z

This function ensures that the output is constrained between 0 and 1, reflecting the
probability of the outcome being 1.
The odds of an event occurring is defined as the ratio of the probability of the event
to the probability of the event not occurring:

Odds(yi = 1|xi) =
P (yi = 1|xi)

1− P (yi = 1|xi)
=

σ(x⊤
i β)

1− σ(x⊤
i β)

To derive this, we first express 1− P (yi = 1|xi):

1− P (yi = 1|xi) = 1− σ(x⊤
i β) = 1− 1

1 + e−x⊤
i β

=
e−x⊤

i β

1 + e−x⊤
i β

Thus, the odds become:

Odds(yi = 1|xi) =
σ(x⊤

i β)

1− σ(x⊤
i β)

=

1

1+e−x⊤
i

β

e−x⊤
i

β

1+e−x⊤
i

β

= ex
⊤
i β

Taking the natural logarithm of the odds yields the log-odds or logit:

log

(
P (yi = 1|xi)

1− P (yi = 1|xi)

)
= x⊤

i β

Thus, logistic regression models the log-odds of the probability of a binary outcome
as a linear function of the input features.
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Logistic Regression Model

For all n observations, the model can be expressed in matrix form:

ŷ = σ(Xβ)

where X ∈ Rn×p is the matrix of feature vectors, β ∈ Rp is the parameter vector, and
ŷ ∈ [0, 1]n represents the predicted probabilities.

Loss Function: Maximum Likelihood Estimation (MLE)

To estimate the parameters β, logistic regression utilizes Maximum Likelihood
Estimation (MLE). The likelihood function, derived from the probabilities, is
defined as:

L(β) =
n∏

i=1

P (yi|xi; β)

The log-likelihood function is easier to optimize and is given by:

ℓ(β) =
n∑

i=1

[
yi log(σ(x

⊤
i β)) + (1− yi) log(1− σ(x⊤

i β))
]

In matrix form, the log-likelihood function can be represented as:

ℓ(β) = y⊤ log(σ(Xβ)) + (1− y)⊤ log(1− σ(Xβ))

Negative Log-Likelihood (Loss Function)

To convert the maximization problem of the log-likelihood into a minimization
problem, we consider the negative log-likelihood:

L(β) = −ℓ(β) = −
n∑

i=1

[
yi log(σ(x

⊤
i β)) + (1− yi) log(1− σ(x⊤

i β))
]

Optimization Problem

The optimization problem can be stated as:

β∗ = argmin
β
L(β)

Matrix Formulation

In matrix form, if y is the vector of outcomes and X is the design matrix of features,
the negative log-likelihood can be expressed as:

L(β) = −
(
y⊤ log(σ(Xβ)) + (1− y)⊤ log(1− σ(Xβ))

)
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Gradient and Optimization

To maximize the log-likelihood function, optimization techniques such as gradient
descent are applied, given the non-linearity of the function. The gradient of the
log-likelihood with respect to β is computed as follows:

∇βℓ(β) = X⊤ (y − σ(Xβ))

This gradient is utilized in iterative algorithms to update the parameter vector β.

Closed-form Solution and Iterative Methods

Unlike linear regression, logistic regression lacks a closed-form solution due to the
non-linearity introduced by the sigmoid function. Therefore, iterative methods such
as gradient descent, stochastic gradient descent, or the Newton-Raphson method
(known as Iteratively Reweighted Least Squares (IRLS) in logistic regression) are
employed for parameter estimation.
1. Gradient Descent updates the parameters using:

βt+1 = βt + α∇βℓ(β)

where α is the learning rate.
2. Newton-Raphson employs the Hessian matrix of second derivatives for
parameter updates:

βt+1 = βt −H−1∇βℓ(β)

where H represents the Hessian matrix, reflecting the curvature of the
log-likelihood function. The sigmoid function σ(z) is vital in logistic regression. It
converts the output of the linear model, x⊤

i β, into a probability within the range of
[0, 1]. This transformation allows logistic regression to effectively predict binary
outcomes. Additionally, the derivative of the sigmoid function, σ(z)(1 − σ(z)),
guarantees that the log-likelihood is a concave function, facilitating efficient
optimization through gradient-based methods.

Definition of the Separating Plane

The separating plane in logistic regression is a hyperplane that distinguishes between
two classes in a feature space. In a binary classification problem, this hyperplane is
determined based on the estimated probabilities of the logistic function, which maps
linear combinations of the input features to values between 0 and 1.

Mathematical Representation

Logistic regression models the probability that the dependent variable y equals 1 (the
positive class) given a set of independent variables x. The model can be expressed
as:

P (yi = 1 | xi) = σ(wTxi + b)
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where:

σ(z) =
1

1 + e−z

is the logistic (sigmoid) function.

• w is the vector of weights (coefficients) for the features.

• b is the bias (intercept) term.

• xi is the feature vector for the i-th observation.

Separating Hyperplane

The decision boundary, or separating plane, is where the probability is exactly 0.5.
Therefore, we set the probability equal to 0.5:

σ(wTx+ b) = 0.5

To find this boundary, we can simplify this equation:
The logistic function equals 0.5 when its argument is zero:

wTx+ b = 0

Rearranging gives us the equation of the hyperplane:

wTx = −b

Interpretation of the separating plane

Classification: For any observation x:

• If wTx+ b > 0, the predicted class is 1 (positive class).

• If wTx+ b < 0, the predicted class is 0 (negative class).

In a two-dimensional feature space, this separating plane is simply a line, and in
three dimensions, it becomes a plane. In higher dimensions, it remains a hyperplane.
Algorithm for Logistic Regression is given in Algorithm 1.
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Algorithm 1 Logistic Regression with Train-Test Split and K-Fold Cross Validation

1: Input: Dataset D = {(x(i), y(i))}mi=1, learning rate α, number of iterations T ,
number of folds k

2: Output: Trained model parameters w, b
3: Step 1: Train-Test Split
4: Split the dataset D into training set Dtrain and test set Dtest with ratio 80:20.
5: Let Xtrain, ytrain be the training features and labels.
6: Let Xtest, ytest be the testing features and labels.
7: Step 2: Initialize weights w = 0 and bias b = 0
8: Step 3: Gradient Descent on Logistic Regression
9: for each iteration t = 1, 2, . . . , T do

10: Compute the linear combination: z(i) = wTx(i) + b
11: Apply the sigmoid function: hθ(x

(i)) = 1

1+e−z(i)

12: Calculate gradients:

∂J(w, b)

∂wj

=
1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j

∂J(w, b)

∂b
=

1

m

m∑
i=1

(hθ(x
(i))− y(i))

13: Update the parameters:

wj = wj − α · ∂J(w, b)
∂wj

, b = b− α · ∂J(w, b)
∂b

14: end for
15: Step 4: K-Fold Cross-Validation
16: Split the training data Dtrain into k folds.
17: for each fold i = 1, 2, . . . , k do
18: Use the i-th fold as the validation set and the rest as the training set.
19: Train the logistic regression model using Gradient Descent on the training

set.
20: Compute validation error and store it.
21: end for
22: Average the validation errors across k folds to estimate the model’s performance.
23: Step 5: Evaluate on Test Set
24: Compute predictions on the test set Xtest using the final model parameters w and

b.
25: Calculate the accuracy or other performance metrics on ytest.
26: Return: Trained model parameters w and b.

Detailed discussion on the implementation, findings and results of Logistic regression
classifier on the selected dataset will be given in the results and discussion chapter
(Chapter 4).
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3.7 Support Vector Machine (SVM) Classifier

Support Vector Machines (SVM) are widely used for classification tasks in machine
learning. The SVM classifier aims to find the optimal separating hyperplane
between two classes, which maximizes the margin between them. This problem can
be formulated as a convex optimization problem using Lagrange multipliers and
solved using both primal and dual methods [37].

Primal Problem Formulation

The primal optimization problem for an SVM is defined as follows:

min
w,b

1

2
∥w∥2

subject to:
yi(w

Txi + b) ≥ 1, ∀i = 1, 2, . . . , n

where xi ∈ Rd are the input vectors, yi ∈ {−1, 1} are the class labels, w ∈ Rd is the
weight vector, and b ∈ R is the bias.
This optimization problem can also be written in matrix form:

min
w,b

1

2
wTw

subject to:
Y (Xw + b) ≥ 1

where X ∈ Rn×d is the matrix of input vectors, Y ∈ Rn×n is the diagonal matrix of
labels, and 1 ∈ Rn is the vector of ones.

Lagrangian for the Primal Problem

The primal problem can be solved using the Lagrangian method. Define the
Lagrangian function:

L(w, b, λ) =
1

2
∥w∥2 −

n∑
i=1

λi

[
yi(w

Txi + b)− 1
]

where λi ≥ 0 are the Lagrange multipliers.
The optimal solution satisfies the following KKT conditions:

• ∂L
∂w

= w −
∑n

i=1 λiyixi = 0

• ∂L
∂b

= −
∑n

i=1 λiyi = 0

• λi

[
yi(w

Txi + b)− 1
]
= 0, λi ≥ 0
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From the first condition, we derive:

w =
n∑

i=1

λiyixi

In matrix form, this becomes:
w = XTΛy

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of Lagrange multipliers.

Dual Problem Formulation

Substituting the expression for w into the Lagrangian, we eliminate w and b, leading
to the dual problem:

min
λ

1

2

n∑
i=1

n∑
j=1

λiλjyiyjK(xi, xj)−
n∑

i=1

λi

subject to the constraints:
n∑

i=1

λiyi = 0, λi ≥ 0

In matrix form, the dual problem is written as:

minλ
1

2
λT (Y XXTY )λ− ITλ

where Y ∈ Rn×n is the diagonal matrix of labels and λ ∈ Rn is the vector of Lagrange
multipliers.

Solving the SVM Dual Problem

The dual problem is a quadratic programming (QP) problem, which can be solved
using numerical methods. Once the optimal λ is obtained, the weight vector w is
computed as:

w =
n∑

i=1

λiyixi

The bias term b is computed from the support vectors (instances for which λi > 0).

Decision Function

The decision function for a new input x is given by:

f(x) = wTx+ b =
n∑

i=1

λiyix
T
i x+ b

The predicted class label ŷ is:
ŷ = sign(f(x))
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Kernel Trick for Nonlinear SVM

In the case of non-linear decision boundaries, the kernel trick can be used to map
the input data into a higher-dimensional space. The dual problem becomes:

minλ
1

2
λT (Y KY )λ− ITλ

where K(xi, xj) = ϕ(xi)
Tϕ(xj) is the kernel function.

The SVM classifier can be formulated as a convex optimization problem, which can
be solved using the Lagrange multipliers method. Both the primal and dual problems
have well-defined solutions, and the dual formulation provides insights into the role
of support vectors and the kernel trick for handling non-linear classification tasks.

3.7.1 Advantages of Convex Optimization in SVM

Convex optimization offers several significant advantages when applied to SVM
classification:

• Global Optimum: Convex problems guarantee that any local minimum is the
global minimum. This is crucial in SVM, ensuring that the optimal separating
hyperplane is found without getting trapped in local minima.

• Efficiency with Quadratic Programs: The optimization problems in SVM
(both primal and dual) are quadratic programs, which are convex by nature.
Efficient algorithms such as interior-point methods and active-set methods
can be used to solve these quadratic convex optimization problems.

• Handling of Constraints: Convex optimization frameworks like CVX can
easily handle constraints (both equality and inequality), which are naturally
imposed in SVM formulations. These include the non-negativity of the
Lagrange multipliers and margin constraints.

• Kernel Methods: The dual formulation of SVM allows the use of kernel
functions, enabling classification in high-dimensional spaces without explicitly
computing the coordinates. Convex optimization helps solve these non-linear
problems efficiently.

Convex Optimization and the Lagrange Function in SVM

The SVM optimization problem naturally leads to a convex optimization framework.
In the primal form, the goal is to maximize the margin between two classes, which
results in a convex optimization problem due to the quadratic nature of the margin
constraint.
The Lagrange function is used to incorporate these constraints into the objective
function. By transforming the problem into its dual form, we solve for the Lagrange
multipliers, which are constrained to be non-negative. The convexity of the dual
problem ensures it can be solved efficiently using convex optimization techniques.
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Benefits of Solving the Dual Formulation of SVM

The dual formulation of SVM provides several advantages over the primal
formulation:

• Identification of Support Vectors: The solution to the dual problem provides
the Lagrange multipliers, λi, associated with each data point. Only the data
points with non-zero values of λi lie on the margin, and these are called support
vectors.

• Efficiency with Kernels: The dual formulation allows the use of kernel
functions, which enable SVM to handle non-linearly separable data by
implicitly mapping data points to higher-dimensional spaces.

• Regularization: In the dual form of soft margin SVM, the regularization
parameter C is naturally incorporated as an upper bound on the Lagrange
multipliers. This helps balance the trade-off between maximizing the margin
and minimizing the classification error.

CVX Syntax for Solving Dual SVM Problems in MATLAB

The CVX toolbox in MATLAB can be used to solve both the hard margin and soft
margin SVM dual problems using convex optimization. Below is the CVX syntax for
each case.

Hard Margin SVM in MATLAB

The following code solves the dual problem for a hard margin SVM using CVX:

% Inputs:

% K: Kernel matrix (n x n) where K(i,j) = K(x_i, x_j)

% y: Labels vector (n x 1), y_i in {-1, +1}

% n: Number of data points

cvx_begin

variable lambda(n)

minimize( 0.5 * quad_form(lambda .* y, K) - sum(lambda) )

subject to

sum(lambda .* y) == 0

lambda >= 0

cvx_end

Soft Margin SVM in MATLAB

The following code solves the dual problem for a soft margin SVM using CVX:
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% Inputs:

% K: Kernel matrix (n x n)

% y: Labels vector (n x 1)

% C: Regularization parameter

cvx_begin

variable lambda(n)

minimize( 0.5 * quad_form(lambda .* y, K) - sum(lambda) )

subject to

sum(lambda .* y) == 0

0 <= lambda <= C

cvx_end

After solving the dual problem, the optimal Lagrange multipliers λ can be interpreted
as follows:

• Support Vectors: Data points corresponding to non-zero λi values are the
support vectors.

The weight vector w can be computed as:

w =
n∑

i=1

λiyixi

The bias term b can be computed using any support vector with 0 < λi < C as:

b = yi −
n∑

j=1

λjyjK(xj, xi)

Convex optimization plays a crucial role in solving SVM classification problems. By
transforming the primal problem into its dual form, we can solve for the Lagrange
multipliers, identify support vectors, and efficiently handle non-linear classification
problems using kernel methods. The CVX package in MATLAB provides a
straightforward way to solve both hard and soft margin SVM problems. Algorithm
to implement the SVM classifier using the CVX solver is given in Algorithm 2.
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Algorithm 2 Solving SVM Classification via Convex Optimization

1: Input: Training data {(xi, yi)}ni=1, regularization parameter C, kernel function
K(xi, xj) (optional)

2: Output: Optimal weight vector w, bias term b, decision function f(x)
3: Step 1: Initialize Parameters
4: Initialize Lagrange multipliers λi ← 0 for i = 1, . . . , n
5: Set convergence criteria ϵ
6: Initialize weight vector w ← 0, bias b← 0
7: Step 2: Formulate the Dual Problem
8: Formulate the dual objective:

min
λ

1

2

n∑
i=1

n∑
j=1

λiλjyiyjK(xi, xj)−
n∑

i=1

λi

9: Subject to constraints:
n∑

i=1

λiyi = 0, 0 ≤ λi ≤ C

10: Step 3: Solve the Dual Problem
11: Solve the quadratic optimization problem using a suitable QP solver such as SMO

or any other algorithm.
12: Step 4: Compute the Weight Vector
13: Once λ is obtained, compute:

w ←
n∑

i=1

λiyixi

(For a kernel SVM, use the implicit kernel representation for w.)
14: Step 5: Compute the Bias Term
15: Choose any support vector xk where 0 < λk < C and compute the bias:

b← yk −
n∑

i=1

λiyiK(xi, xk)

16: Step 6: Construct the Decision Function

17: Define the decision function as: f(x)←
n∑

i=1

λiyiK(xi, x) + b

18: Predict the class label for a new input x as: ŷ ← sign(f(x))
19: Step 7: Convergence Check
20: Check the convergence of the optimization process. If the solution has not

converged within the specified tolerance ϵ, repeat the optimization process.
21: Step 8: Output the Classifier
22: Return the weight vector w, bias b, and decision function f(x).

34



3.8. Decision Tree Classifier Chapter 3. Methodology

3.8 Decision Tree Classifier

Decision trees are a popular and interpretable model used for classification and
regression tasks in machine learning. The algorithm builds a tree-like model of
decisions and their possible consequences, effectively partitioning the feature space
into distinct regions. The main objective is to create a model that predicts the target
variable by learning simple decision rules inferred from the data features.

Tree Structure Representation

A decision tree is represented as a hierarchical structure composed of nodes and
branches. Each internal node represents a decision based on a feature, each branch
represents the outcome of the decision, and each leaf node represents a class label
(for classification tasks) or a continuous value (for regression tasks).
Let D be the dataset with n instances, where each instance is represented as (xi, yi)
for i = 1, 2, . . . , n, with xi ∈ Rd as the feature vector and yi as the target variable.

Splitting Criteria

The core of building a decision tree lies in selecting the best feature to split the data
at each node. The goal is to maximize the information gain or minimize the impurity
after the split.

Information Gain

Information Gain (IG) measures the reduction in entropy after a dataset is split on
an attribute. The entropy H(D) of a dataset D is defined as:

H(D) = −
∑
c

P (c|D) log2 P (c|D)

where P (c|D) is the proportion of instances in class c.
When splitting the dataset D on feature A, the entropy of the resulting subsets Dv

for each value v of A is computed as follows:

H(D|A) =
∑
v

P (v|D)H(Dv)

The Information Gain for the attribute A is given by:

IG(D,A) = H(D)−H(D|A)

The attribute that yields the highest Information Gain is selected for the split.
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Gini Impurity

Alternatively, Gini Impurity can be used as a splitting criterion. The Gini Impurity
G(D) of a dataset D is defined as:

G(D) = 1−
∑
c

P (c|D)2

For a split on feature A, the Gini Impurity after the split is given by:

G(D|A) =
∑
v

P (v|D)G(Dv)

The feature that minimizes the Gini Impurity is chosen for the split.

Recursive Partitioning

The process of constructing a decision tree involves recursively partitioning the data
based on the selected features until a stopping criterion is met. Common stopping
criteria include:

• Maximum tree depth

• Minimum number of samples in a node

• No further information gain from splits

At each leaf node, a prediction is made based on the majority class (for classification)
or the average value (for regression) of the instances in that node.

Overfitting and Pruning

One challenge in building decision trees is overfitting, where the model becomes too
complex and captures noise in the data. Pruning is a technique used to address this
issue by removing branches that provide little predictive power.
Two common pruning strategies are:

• Pre-pruning: Stop growing the tree when further splits do not significantly
improve the model (e.g., based on a threshold for Information Gain).

• Post-pruning: Grow the full tree and then remove nodes that do not improve
model performance on a validation set.

Decision Rule

Once the decision tree is constructed, the decision rule for predicting a new instance
x can be formulated as follows:

• Start at the root node and evaluate the feature xj corresponding to the
decision.
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• Traverse the tree by following the branches based on the values of xj until a
leaf node is reached.

• The predicted class label ŷ is the label associated with the leaf node.

Mathematically, the prediction can be represented as:

ŷ = f(x) = label of the leaf node reached by x

Convex Optimization Model

Although decision trees are not typically framed as convex optimization problems,
we can discuss the optimization perspective in terms of minimizing the overall
impurity across the tree. The goal is to minimize the weighted impurity of the
nodes:

min
θ

∑
v

P (v|D)G(Dv)

where θ represents the parameters defining the splits of the tree. While individual
node splits may not yield a convex loss function, the overall objective can be viewed
through an optimization lens.
The convex nature arises in ensemble methods built upon decision trees, such as
Gradient Boosting, where loss functions can be designed to be convex. The
optimization framework often involves:

min
θ

L(y, f(x; θ))

where L is a convex loss function, y is the target variable, and f(x; θ) represents the
prediction from the ensemble of trees.

Advantages of Decision Trees

Decision trees offer several advantages as a machine learning model:

• Interpretability: Decision trees provide a clear and interpretable model that
can be visualized easily.

• Non-parametric: They do not assume any underlying distribution for the data.

• Handling Mixed Data Types: Decision trees can handle both numerical and
categorical data.

• Feature Importance: Decision trees naturally provide insights into the
importance of different features.

Overall, decision trees are a versatile and powerful tool in machine learning,
providing a foundation for more complex ensemble methods such as Random
Forests and Gradient Boosting Machines.
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Algorithm 3 Decision Tree Algorithm

1: Input: Dataset D = {(x(i), y(i))}ni=1, stopping criteria
2: Output: Decision tree model
3: Step 1: If all instances in D belong to the same class, return a leaf node with

that class label
4: Step 2: If stopping criteria are met, return a leaf node with the majority class

label in D
5: Step 3: For each feature Aj, calculate Information Gain or Gini Impurity
6: Step 4: Select the feature Ak with the highest Information Gain or lowest Gini

Impurity for the split
7: Step 5: Split the dataset D into subsets Dv based on the values of feature Ak

8: for each subset Dv do
9: Step 6: Recursively call the decision tree algorithm on subset Dv

10: end for
11: Step 7: Combine the results to form the decision tree

3.8.1 Lagrangian Formulation of Decision Trees

Problem Statement

Given a dataset (X, y), where X ∈ Rn×m is the feature matrix with n samples and
m features, and y ∈ Rn is the target vector, we aim to construct a decision tree that
minimizes a loss function while adhering to certain constraints.

Objective Function

The objective is to minimize the total loss, which can be defined as the sum of the
loss at each node of the tree. A common choice for the loss function is the mean
squared error (MSE) for regression tasks or cross-entropy for classification tasks.
The overall optimization problem can be formulated as:

min
T

n∑
i=1

L(yi, ŷi) + λ ·R(T ) (3.1)

Where:

• L(yi, ŷi) is the loss at node i.

• R(T ) is a regularization term (e.g., tree depth, number of leaves).

• λ is a hyperparameter controlling the trade-off between the loss and the
regularization.

Lagrangian Function

To include constraints, we define a Lagrangian function. For a decision tree, you
might want to include constraints on the maximum depth of the tree and the
minimum number of samples at each leaf node.
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The Lagrangian L can be defined as:

L(T, α, β) =
n∑

i=1

L(yi, ŷi) + λ ·R(T ) + α(D −Dmax) + β(Nmin −N) (3.2)

Where:

• D is the depth of the tree.

• Dmax is the maximum allowed depth.

• Nmin is the minimum required samples at a leaf node.

• N is the number of samples in the node.

Interpretation of Lagrange Multipliers

The Lagrange multipliers λj play a critical role in balancing the trade-off between
minimizing the loss function and satisfying the constraints. A positive λj indicates
that the corresponding constraint is active, suggesting that the optimization process
will prioritize satisfying this constraint. As the optimization progresses, the values of
λj adjust, reflecting the importance of each constraint relative to the loss function.

3.9 Random Kitchen Sink (RKS) Kernel in Soft Margin
SVM Classifier

The Random Kitchen Sink (RKS) method provides a novel approach for
approximating kernel functions, particularly advantageous in the context of soft
margin Support Vector Machine (SVM) classifiers. The RKS kernel allows for
efficient computation of kernel evaluations by employing random feature
mappings. Given a kernel function K(x, y), the RKS method approximates it
through a feature mapping z : Rn → Rd, where the features are defined as:

z(x) =

√
2

d


cos(ωT

1 x+ b1)
cos(ωT

2 x+ b2)
...

cos(ωT
d x+ bd)


In this formulation, the random vectors ωi are drawn from a Gaussian distribution
N (0, σ2), while bi are uniformly sampled from the interval [0, 2π]. The RKS kernel
approximates the original kernel as:

K(x, y) ≈ 1

d
z(x)T z(y)

This representation capitalizes on the Fourier basis, allowing for an efficient
estimation of kernels like the Radial Basis Function (RBF) kernel, which is defined
as:
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K(x, y) = exp

(
−||x− y||2

2σ2

)
The Fourier transform of the RBF kernel reveals its spectral properties, allowing
RKS to efficiently sample features that capture the essential relationships in the data
while avoiding the computational burden of direct kernel evaluations.
When incorporated into the soft margin SVM framework, the RKS kernel
significantly enhances computational efficiency. The SVM seeks to minimize the
following objective function:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi

where ξi are slack variables that allow for misclassifications, and C is a regularization
parameter controlling the trade-off between margin maximization and classification
errors. The optimization is subject to the constraints:

yi
(
wT z(xi) + b

)
≥ 1− ξi, ∀i

The dual formulation of the soft margin SVM can be represented as:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)−
n∑

i=1

αi

subject to the constraints:

n∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C.

By substituting the RKS kernel into this formulation, the kernel evaluations K(xi, xj)
can be approximated using the random features derived from z(xi) and z(xj).
The advantages of using the RKS kernel are notable, especially regarding
computational scalability and flexibility in modeling complex non-linear
relationships. The accuracy of the RKS approximation improves as the number of
random features d increases, enabling the kernel to capture a more accurate
representation of the underlying data distribution. Additionally, as the sample size
grows, the benefits of the RKS kernel become more pronounced, reinforcing its
suitability for large datasets where traditional kernel methods may falter.

3.10 Built-in Machine Learning Functions in MATLAB

To supplement custom-built models with standardized methods, several built-in
machine learning functions are available in MATLAB. These functions, such as
fitglm, fitcsvm, and fitctree, allow for efficient model fitting, fine-tuning, and
evaluation, making them useful for both preliminary analysis and performance
benchmarking against hand-crafted models.
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3.10.1 Logistic Regression using fitglm

Logistic regression is a widely used technique for binary classification tasks, and
MATLAB provides the fitglm function for this purpose. The fitglm function fits a
generalized linear model to the data, which in the context of binary classification
utilizes a binomial distribution to model the probability of a given class. The basic
syntax for fitting a logistic regression model is:

model = fitglm(X, y, ’Distribution’, ’binomial’);

Here, X is the matrix containing the predictor variables, and y is the response
variable, which must be a binary outcome. The function fits the model by
employing maximum likelihood estimation under the assumption of a binomial
distribution, thus creating a probability-based classification. The trained model can
be used for predicting new outcomes using the predict method, and the
confidence intervals of the coefficients can be obtained via the coefCI method. This
function provides flexibility for logistic regression problems and supports
customization in terms of link functions and interaction terms, making it robust for
exploring the relationship between predictor variables and binary outcomes.

3.10.2 Support Vector Machines using fitcsvm

Support Vector Machines (SVMs) are a powerful classification technique,
particularly useful for high-dimensional spaces and cases where the classes are
separable by a hyperplane. In MATLAB, the fitcsvm function implements SVMs for
binary classification. The syntax to train a basic linear SVM is as follows:

model = fitcsvm(X, y, ’KernelFunction’, ’linear’);

In this case, X represents the set of features, and y contains the class labels. The
KernelFunction argument specifies the type of kernel to use, with common options
including ’linear’, ’polynomial’, and ’rbf’ (radial basis function). SVMs are designed
to find the hyperplane that maximally separates the two classes in the feature
space. The choice of kernel function allows the SVM to handle non-linearly
separable data by transforming it into a higher-dimensional space where a linear
separation is possible.
Once the model is trained, predictions can be made using the predict method.
Additionally, the model’s performance can be evaluated using cross-validation by
applying the crossval method, which divides the dataset into training and testing
sets to estimate the generalization error. This method is crucial for assessing the
model’s reliability on unseen data, ensuring that the chosen hyperparameters (such
as the regularization parameter or kernel type) are appropriate for the problem.

3.10.3 Decision Trees using fitctree

Decision trees are a non-parametric, interpretable method for classification, which
recursively splits the data based on feature values to create a tree-like structure.
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MATLAB’s fitctree function provides a straightforward way to build decision trees
for classification tasks. The basic syntax is:

model = fitctree(X, y);

The matrix X contains the predictor variables, while y holds the corresponding class
labels. Decision trees work by recursively partitioning the feature space into regions
that maximize the separation between different classes. The split criterion is often
based on measures such as Gini impurity or information gain. The resulting tree can
be visualized using the view function, which produces a graphical representation of
the splits and class assignments at each node.
This function allows for further customization, such as setting the minimum leaf
size to control overfitting, and the depth of the tree can be constrained to ensure
that the model generalizes well to new data. Predictions can be made using the
predict method, and the model can also undergo cross-validation to estimate its
performance using the crossval method.

3.10.4 Comparative Evaluation and Tuning of Models

Once models are trained using the built-in functions, their performance can be
compared against the custom-developed models by evaluating standard
classification metrics such as accuracy, precision, recall, and the F1 score. These
metrics can be computed using MATLAB’s confusionmat function, which creates a
confusion matrix by comparing true class labels with predicted labels. This allows
for the calculation of sensitivity (true positive rate), specificity (true negative rate),
and overall accuracy.
For a more detailed evaluation of the model’s discriminative ability, the receiver
operating characteristic (ROC) curve can be plotted, and the area under the curve
(AUC) can be computed to measure the trade-off between sensitivity and specificity
at different classification thresholds.
Additionally, the built-in models offer hyperparameter tuning options. For example,
the regularization parameter in SVMs can be adjusted to control the trade-off
between margin size and classification error on the training data. This fine-tuning
process helps to improve the model’s generalization performance, ensuring that it
performs well not only on the training data but also on unseen data.

3.11 Towards an Explainable and Sustainable Tumor
Classification Model

In the complex domain of tumor classification, the limitations of traditional
supervised learning models reveal the need for a more nuanced approach, one that
emulates the diagnostic expertise of seasoned physicians. Experienced doctors
often rely on pattern recognition developed over years of practice to classify cancer
stages or assess severity, sometimes bypassing extensive invasive tests. By
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interpreting symptoms, test results, and clinical indicators in context, doctors
provide a valuable, cost-effective, and sustainable approach to patient care.
Adopting an unsupervised machine learning method, such as clustering, aims to
replicate this diagnostic intuition by discovering intrinsic groupings within the data
without relying on predefined labels. Such an approach is crucial in tumor data
analysis, where outliers may indicate unique or severe cases, potentially revealing
new tumor subtypes or stages. By retaining outliers, clustering preserves diagnostic
granularity, allowing the model to identify rare but critical cases that may inform
tailored treatment plans. This methodology aligns with the healthcare goal of
sustainability by minimizing the need for excessive confirmatory testing.
Furthermore, a model capable of generating explainable classifications from
unsupervised learning can adapt as new data arises, providing medical practitioners
with flexible insights into disease progression. The challenge of maintaining model
interpretability is addressed through techniques that prioritize clinical relevance in
the latent features, ensuring that the model’s insights remain transparent and
actionable. This direction holds promise for developing robust machine learning
tools that support precision medicine by aiding in accurate diagnosis, enabling
early intervention, and optimizing patient care outcomes.

3.12 Tumor Classification Using K-Means Clustering

Using the unsupervised methods such as clustering, the model can uncover hidden
patterns in the data that align with medical science. This approach allows for the
creation of explainable tumor classes based on the identified patterns, offering
insights into potential new sub types or stages of disease progression. In this
context feasibility of a clustering model is investigates as explained in this section.

3.12.1 Classical K-Means Clustering Approach

The K-means clustering algorithm is a widely used unsupervised machine learning
technique for partitioning data into distinct clusters. It aims to group data points
such that the variance within each cluster is minimized. The algorithm proceeds
through the following steps:

1. Initialization: Randomly select k initial centroids µj for the clusters.

2. Assignment Step: Assign each data point xi to the nearest centroid based on
Euclidean distance:

zij =

{
1 if j = argminj′ ∥xi − µj′∥2

0 otherwise

3. Update Step: Recalculate the centroids µj as the mean of all points assigned
to cluster j:

µj =
1∑N

i=1 zij

N∑
i=1

zijxi

43



Chapter 3. Methodology 3.12. Tumor Classification Using K-Means Clustering

4. Convergence Check: Repeat the assignment and update steps until the
centroids do not change significantly or a specified number of iterations is
reached.

The loss function to minimize during this process is the within-cluster sum of
squares:

min
z,µ

k∑
j=1

N∑
i=1

zij∥xi − µj∥2

3.12.2 Limitations of the Classical Approach

While traditional K-means clustering effectively groups data, it often fails to capture
the complex patterns inherent in medical datasets, such as tumor classification.
Misclassification can occur, especially in cases where the data contains outliers or
when the underlying patterns do not conform to a strict binary classification. These
limitations necessitate a more nuanced approach that can handle variability in the
data, akin to the diagnostic skills of experienced medical practitioners.

3.12.3 Transition to Lagrangian Multiplier Model

To address these limitations, we reformulate the K-means clustering problem using
a Lagrangian multiplier model. This approach allows us to incorporate constraints
directly into the optimization framework, making it suitable for more complex and
realistic scenarios.

Problem Setup

Let:

• X = {x1, x2, . . . , xN} be the dataset with N data points, where each xi ∈ Rd.

• k be the number of clusters.

• µj ∈ Rd represent the centroid of cluster j.

• zij ∈ {0, 1} be a binary variable, where zij = 1 if xi is assigned to cluster j, and
zij = 0 otherwise.

Objective Function with Constraints

We seek to minimize the within-cluster variance while enforcing assignment
constraints:

min
z,µ

k∑
j=1

N∑
i=1

zij∥xi − µj∥2

subject to the constraints:
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1. Assignment Constraint: Each point must be assigned to exactly one cluster:

k∑
j=1

zij = 1, ∀i = 1, . . . , N

2. Binary Constraint: The variable zij must be binary:

zij ∈ {0, 1}, ∀i = 1, . . . , N, j = 1, . . . , k

Lagrangian Formulation

To incorporate the constraints into the optimization problem, we introduce a
Lagrange multiplier λi for each point xi to enforce the assignment constraint. The
Lagrangian for this problem can be expressed as:

L(z, µ, λ) =
k∑

j=1

N∑
i=1

zij∥xi − µj∥2 +
N∑
i=1

λi

(
1−

k∑
j=1

zij

)

This formulation allows us to minimize the within-cluster variance while ensuring
that each point is assigned to exactly one cluster.

3.12.4 Optimization Model Solved with CVX

Using CVX, we can solve this constrained optimization problem iteratively:

1. Step 1: Fix µ and solve for z with CVX, enforcing the assignment constraints.

2. Step 2: Fix z and update µ as the mean of assigned points.

MATLAB CVX Code Example

% Load your data in X and specify the number of clusters

X = ...; % (NxD matrix, where N is number of points and D is dimensions)

k = ...; % Number of clusters

[N, D] = size(X);

% Initialize centroids randomly

mu = X(randperm(N, k), :);

for iter = 1:100 % Set max iterations or use a convergence criterion

% Step 1: Solve for z with fixed mu using CVX

cvx_begin

variable z(N, k)

% Objective function: Minimize within-cluster variance

minimize(sum(sum(z .* repmat(sum((X - mu’).^2, 2), 1, k))))
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% Subject to assignment constraints

subject to

sum(z, 2) == 1; % Each point assigned to one cluster

z >= 0; % Relaxed binary constraint for convex optimization

cvx_end

% Step 2: Update centroids based on current z

for j = 1:k

mu(j, :) = sum(repmat(z(:, j), 1, D) .* X, 1) / sum(z(:, j));

end

% Check for convergence if needed

end

3.12.5 Evaluation of Clustering: Silhouette Score

After obtaining clustering assignments, evaluate model performance using the
silhouette score. For each data point xi, calculate the mean intra-cluster distance
a(i) and the mean nearest-cluster distance b(i):

1. Mean Intra-Cluster Distance a(i):

a(i) =
1

|Ci| − 1

∑
xj∈Ci

∥xi − xj∥2

where Ci is the cluster containing xi.

2. Mean Nearest-Cluster Distance b(i):

b(i) = min
j ̸=i

1

|Cj|
∑
xk∈Cj

∥xi − xk∥2

3. Silhouette Score s(i):

s(i) =
b(i)− a(i)

max(a(i), b(i))

The overall silhouette score provides insight into clustering quality and helps
compare models with different k values.

3.13 Conclusion

In this study, we revisited the mathematical models of classical machine learning
algorithms, specifically focusing on Logistic Regression, Support Vector Machines
(both hard and soft margin), and Decision Trees. A significant aspect of our approach
involved employing convex optimization techniques to formulate and solve these
models. The convex optimization framework allowed for effective minimization of

46



3.13. Conclusion Chapter 3. Methodology

the loss functions associated with each algorithm, ensuring global optima in the
training process.
These custom models were utilized to predict the likelihood of breast cancer using
the Breast Cancer dataset from the University of Wisconsin at Madison. By applying
these models, we gained insights into the underlying relationships between the
features and the target variable, which is crucial for understanding the predictive
capabilities of each algorithm in the context of breast cancer diagnosis.
Subsequently, we leveraged built-in MATLAB functions such as fitglm, fitcsvm, and
fitctree to perform the same predictive task.
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Chapter 4

Results and Discussions

4.1 Introduction

This chapter presents the results obtained from implementing various classification
algorithms to predict breast cancer using the Breast Cancer dataset from the
University of Wisconsin at Madison. The algorithms evaluated in this study include
custom implementations of Logistic Regression, Support Vector Machines (SVM)
with both hard and soft margins, and Decision Trees, all formulated through convex
optimization techniques. Additionally, the performance of built-in MATLAB
functions—fitglm, fitcsvm, and fitctree—is also assessed for comparison.
The primary objective of this chapter is to provide a detailed analysis of the
classification performance of each algorithm based on several metrics, including
accuracy, sensitivity, specificity, F1 score, Receiver Operating Characteristic (ROC)
curve, and Area Under the Curve (AUC). By systematically evaluating the results,
we aim to uncover insights into the strengths and weaknesses of each approach in
predicting breast cancer.
Furthermore, the discussions will address the implications of the findings,
emphasizing the significance of mathematical modeling and optimization in
machine learning applications. The interplay between the custom models and
MATLAB’s built-in functions will be explored to highlight how both approaches
contribute to achieving robust predictive performance in the medical domain.
Through this examination, we aim to provide a comprehensive understanding of
the effectiveness of different classification techniques in the context of breast cancer
diagnosis.

4.2 Skill of Logistic Regression Classifier

In preparation for logistic regression to predict malignant cells, we conducted a
correlation analysis to identify the most dominant features associated with the
target variable (malignancy). The analysis revealed six features with a correlation
coefficient greater than 0.75, indicating a strong relationship with the diagnosis
outcome. The distribution of these six features across the target classes (malignant
and benign) is visualized in the figure, providing insights into how these features
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differ between the two classes. This analysis serves as a foundational step in feature
selection for the logistic regression model. Our aim is to find the optimal number of
features which produce better performance metrics in logistic regression.
Distribution of top six dominant feature in classification into benign or malignant is
shown in Figure 4.1.
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Figure 4.1: Distribution of dominant features across the target variable (malignant and
benign) before preprocessing.

In logistic regression, outlier removal and feature scaling are critical preprocessing
steps that significantly improve model performance. Outliers can distort the
decision boundary by disproportionately affecting the estimated coefficients,
leading to poor generalization and inaccurate predictions. Logistic regression
assumes a linear relationship between the features and the log-odds of the target
class. Outliers, especially in features with large values, can skew this relationship,
resulting in an overfitted model with reduced interpretability.

Feature scaling is equally important because logistic regression is sensitive to the
relative magnitudes of feature values. Features with larger scales may dominate the
learning process, leading to biased coefficient estimates. Scaling ensures that all
features contribute equally to the optimization of the cost function during gradient
descent. This improves convergence speed and stability of the optimization process.

After applying these preprocessing steps, a correlation analysis was performed to
identify the six most correlated features with the target variable (malignant or
benign). The top six features were selected based on their correlation coefficient
(greater than 0.74), and their distribution across the target variable is shown in
Figure 4.2. These features provide the most predictive power in distinguishing
between malignant and benign cells, enhancing the logistic regression classifier’s
ability to make accurate predictions.
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Figure 4.2: Distribution of dominant features after outlier removal and scaling.

Incorporating these steps ensures a robust and reliable logistic regression model,
capable of accurately predicting the likelihood of breast cancer based on the most
informative features.

It is observed that after scaling and outlier removal, the top six highly correlated
features with the target variable remained the same, though their order of
correlation changed slightly.

Here, we explored a mathematical approach to develop a binary classifier from a
linear regressor. Using a linear model, the output is predicted as W Tx, where W
represents the weight vector and x the input features. For binary classification, the
separating plane is defined by the equation W Tx = 0, which divides the input space
into two regions corresponding to the two classes.

The key objective is to optimize the weight vector W using a kernel regressor
designed for linear regression. By employing kernel regression, we aimed to
capture nonlinear relationships between features and improve the performance of
the model. The linear regressor’s predictions are then transformed into binary
outputs based on the separating plane, where values greater than zero were
classified into one class, and those less than zero into the other.

This approach bridges the gap between regression and classification by transferring
the continuous output of a regressor to define a decision boundary for classification.
The results of this methodology demonstrated that the binary classifier derived
from the optimized linear regressor performs effectively in separating the two
target classes. This method is particularly useful when there is a linear or nearly
linear relationship between the input features and the output classes.

Models with 30 cleaned and scaled features shows almost similar performance
metrics scores in logistic regression.

Figure 4.3 shows the separating planes and data points plotted over the top two
correlated features in both linear separating boundary (Figure 4.3a) and sigmoid
boundary (Figure 4.3b).
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(a) Separating boundary WTX = 0 of linear
regression

(b) Separating boundary σ(WTX) = 0.5 of
sigmoid regression

Figure 4.3: Separating planes and data distribution in linear and logistic regression

A comparison of performance of both the generated linear regressor and logistic
regressor is shown in Table 4.1.

Table 4.1: Performance Comparison of Linear and Logistic Regressors for Binary
Classification

Metric Linear Regressor Logistic Regressor
Accuracy 0.56 0.97
Sensitivity 1.00 0.96
Specificity 0.30 0.97
F1 Score 0.471 0.96
AUC 0.20 0.99

From Table 4.1, it is clear that logistic regressor is a clear winner.

In this study, we aimed to determine the optimal number of features that enhance
the classification performance of our model. To achieve this, we employed 5-fold
cross-validation, which helps stabilize performance metrics by mitigating the
variability that may arise from different training and testing splits. We applied a
linear regression classifier across various feature subsets, using the correlation with
the target variable as a benchmark for feature selection. This approach enabled us
to systematically evaluate the impact of feature count on classification skill and
identify the most effective subset for improved predictive accuracy. Table 4.2
presents the performance metrics associated with different numbers of features
corresponding to the selected correlation level.
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Table 4.2: Performance metrics of logistic regression classifier across different feature
subsets

#Features ρ ≥ Acc-K-fold Acc Sen Spe Er.rate AUC F1-Score
5 0.75 0.95 0.95 0.92 0.96 0.045 0.990 0.9396
9 0.70 0.95 0.96 0.94 0.97 0.030 0.993 0.9548
13 0.60 0.93 0.97 0.95 0.97 0.029 0.994 0.9599
15 0.50 0.95 0.96 0.93 0.98 0.030 0.990 0.9543
20 0.40 0.96 0.98 0.96 0.98 0.019 0.990 0.9699
23 0.30 0.95 0.97 0.96 0.98 0.020 0.990 0.9699
25 0.20 0.95 0.98 0.97 0.98 0.017 0.998 0.9750

4.2.1 Performance Metrics Analysis

The analysis of the performance metrics presented in Table 4.2 emphasizes the goal
of developing a robust and consistent model with an optimal number of features for
binary classification in medical diagnosis.

4.2.2 Overview of Performance Metrics

Number of Features and Correlation (ρ)

The correlation values (ρ) indicate a decline from 0.75 with the 5-feature subset to
0.20 with the 25-feature subset. This suggests that while fewer features exhibit
stronger individual relationships with the target variable, the inclusion of more
features does not necessarily correlate with a proportional improvement in model
performance.

Accuracy (Acc)

The accuracy of the model shows minimal variation as the number of features
increases, peaking at 0.98 with both the 20 and 25 feature subsets. This indicates
that while the model maintains a high level of accuracy, the incremental benefit of
adding more features is marginal. The results suggest a point of diminishing
returns in terms of accuracy, emphasizing the importance of feature selection for
model simplicity and interpretability.

K-fold Cross-Validation Accuracy (Acc-K-fold)

The K-fold cross-validation accuracy remains relatively consistent across all feature
subsets, ranging from 0.93 to 0.96. This stability suggests that the model’s
performance is robust and not overly dependent on the number of features
included. It reinforces the notion that a more parsimonious model could be equally
effective, if not more so, in terms of generalization and interpretability.
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Sensitivity

Sensitivity values, ranging from 0.92 to 0.97, indicate the model’s strong ability to
identify malignant cases consistently. However, the slight variations in sensitivity
across different feature subsets suggest that increasing the feature count does not
significantly enhance this critical aspect of performance.

Specificity

Specificity remains high, ranging from 0.96 to 0.98 across all subsets, indicating that
the model effectively identifies non-malignant cases. This consistency in specificity
further supports the potential for a simpler model without compromising the ability
to accurately classify both malignant and non-malignant cases.

Error Rate

The error rate decreases from 0.045 (with 5 features) to 0.017 (with 25 features),
suggesting a slight improvement in reliability. However, the reduction is modest
compared to the increase in complexity associated with additional features,
highlighting the necessity of considering feature selection carefully.

Area Under the Curve (AUC)

The AUC values consistently remain high (0.990 to 0.998), indicating the model’s
strong discriminatory power across all feature subsets. This stability in AUC suggests
that a robust model can be developed without necessitating an excessive number of
features.
As a final step, regularization techniques—L1, L2, and Elastic Net—are applied to
the logistic regression model using gradient descent to minimize the mean square
error in prediction. The analysis is conducted on two feature sets-Full Feature Set
(30 scaled features) and Dominant Subset (Top 5 correlated features).
Performance metrics, including accuracy, sensitivity, specificity, F1-score, and AUC,
are computed for each model. Summary of these results along with the K-fold cross
validation of L1 regularization model is shown in Table 4.3.

Table 4.3: Comparison of performance metrics of various regularized models and K-fold
cross validation

Regularized
Model

Performance Metrics
30 feature set Top 5 correlated subset

Metric −→ Acc Sen Spec F1 Acc Sen Sepc F1
L2 0.968 0.961 0.971 0.960 0.947 0.930 0.960 0.930
L1 0.975 0.970 0.980 0.970 0.944 0.920 0.960 0.920

Elastic Net 0.975 0.970 0.980 0.970 0.944 0.920 0.960 0.920
L1 with K-fold CV 0.973 0.960 0.980 0.960 0.942 0.910 0.960 0.920
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These findings during the training phase, highlight the effectiveness of L1
regularization for feature selection, model accuracy, and consistency, making it the
most suitable technique for this classification task.
Each of these models applied on the test dataset. A summary of accuracy on the
training and test data set is shown in Table 4.4.

Table 4.4: Comparison of performance metrics of various logistic regression models on
train and test dataset.

Regularized
Model

Performance Metrics
30 feature set Top 5 correlated subset

Metric −→ Training
Accuracy

Test
Accuracy

Training
Accuracy

Test
Accuracy

L2 0.968 0.964 0.947 0.930
L1 0.975 0.964 0.944 0.942

Elastic Net 0.975 0.957 0.944 0.942

The results from both the training and test phases provide a clear indication of
each regularized model’s strengths and applicability for this classification task.

• L1 Regularization consistently achieved the highest test accuracy on both
feature sets, with near-equal performance on training and test data,
demonstrating its effectiveness in improving model interpretability without
compromising generalization. This outcome aligns with L1’s characteristic of
promoting sparsity, effectively zeroing out less informative features, which is
particularly advantageous in reducing dimensionality and potential
overfitting. The AUC of 0.99 further validates its discriminative power,
confirming its suitability for distinguishing between malignant and benign
cases.

• L2 Regularization showed stable accuracy across the training and test sets,
particularly in the full 30-feature set where it achieved similar test accuracy to
L1 (0.964). This stability suggests that L2 is effective in managing
multicollinearity and controlling model complexity, making it a solid choice
for datasets where feature interpretability is less critical.

• Elastic Net Regularization provided high training accuracy but slightly lower
test accuracy on the 30-feature set, indicating a small degree of overfitting.
However, Elastic Net matched L1 in test accuracy on the top 5 feature subset
(0.942), making it a balanced choice when both L1 and L2 penalties are desired
to handle feature selection alongside multicollinearity.

In conclusion, L1 Regularization emerges as the optimal method, offering a
balanced approach to accuracy, feature selection, and model consistency, especially
on datasets with potentially redundant or irrelevant features. This approach
provides strong generalization and interpretability, which is beneficial for robust
classification in this domain.
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This suggests that, for the goal of developing a better and more consistent model,
it is essential to focus on identifying an optimal number of features that strike a
balance between performance and model simplicity. The results advocate for feature
selection based on correlation strength with the target variable while considering
the overall performance stability to enhance interpretability and ensure effective
medical diagnosis. Thus, an emphasis on parsimony may yield a model that is not
only efficient but also easier to implement in practical scenarios.

4.3 Skill of Support Vector Machines

Despite the extensive preprocessing applied to the dataset—including feature
scaling and outlier removal—five features still exhibited significant outliers during
the logistic regression analysis (chapter 3, section 3.2.7, Figure 3.3). While logistic
regression performed well on the data, theoretical insights suggest that in the
presence of outliers, especially in high-dimensional spaces, Support Vector
Machines (SVMs) offer superior performance due to their robustness in handling
such irregularities.
SVMs are designed to find an optimal hyperplane that maximally separates classes
by focusing on the most critical data points—referred to as support vectors—thus
minimizing the influence of outliers. This property makes SVMs particularly suitable
for scenarios where the data may not be perfectly linearly separable, as was observed
in the earlier experiments.
Given the residual outliers and the need for a more robust classification framework,
SVMs are a natural next step to explore. The aim is to leverage their ability to
manage outliers while improving the overall performance metrics of the model,
particularly in terms of classification accuracy and consistency across folds. The
following sections will discuss the application of SVMs to this dataset and provide a
comparative analysis with logistic regression.

4.3.1 Hard Margin Support Vector Machine with Linear Kernel

A hard margin Support Vector Machine (SVM) with a linear kernel is applied to the
dataset. The dual Lagrange multiplier formulation is solved using the CVX solver in
MATLAB. The model achieved an accuracy of 62.7%. However, it was observed that
the sensitivity (true positive rate) is 0, indicating that the model failed to correctly
classify any malignant cases. Even with the top 5 correlated features, the same
result is obtained. This outcome suggests that the hard margin SVM, which does not
allow for any misclassification or margin violation, is overly rigid for the given data.
The lack of flexibility in hard margin SVMs means that it prioritizes separating the
majority class perfectly, leading to poor sensitivity, especially when the classes are
not perfectly linearly separable. Figure 4.5a demonstrate this issue.
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(a) Distribution of data points over first two
features under hard margin svm

(b) Distribution of data points over first two
features under soft margin svm

Figure 4.4: Distribution of data points over first two features under hard and soft margin
linear SVM

This result underscores the need for a more flexible approach, such as soft margin
SVMs, to allow some misclassification and better accommodate the complexity of
the data. Using soft margin linear SVM on the 30 feature set did not produce even
a support vector. After normalizing the feature set, a soft margin SVM with a linear
kernel and regularization parameter c = 1 was applied. The model produced 22
support vectors and achieved an improved accuracy of 79.79%. The sensitivity and
specificity were 55.66% and 94.12%, respectively.Distribution of data points over
first two features and the separation boundary is shown in Figure 4.5b.
The introduction of a soft margin allowed the model to tolerate some
misclassifications, enhancing its flexibility compared to the hard margin SVM. This
improved the model’s ability to correctly classify malignant cases, as reflected in the
increased sensitivity. The high specificity suggests that the model maintained strong
performance in identifying benign cases.

4.3.2 Soft Margin Support Vector Machine with Linear Kernel

Using the top 5 highly correlated features, a soft margin Support Vector Machine
(SVM) with a linear kernel and regularization parameter c = 10 is applied. This
model identified 5 support vectors and showed a significant improvement in
performance, achieving an accuracy of 94.4%. The sensitivity (95.8%) and
specificity (92.82%) indicate that the model effectively balances both positive
(malignant) and negative (benign) class predictions.
The introduction of the soft margin allows for some misclassification, enabling the
model to better handle the presence of noise and outliers in the dataset. This
flexibility leads to improved sensitivity, which is critical in medical diagnosis, as it
ensures that malignant cases are correctly identified. The higher specificity further
confirms the model’s capability to accurately classify benign cases, resulting in a
more robust classification.
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The trade-off between sensitivity and specificity indicates that while the model
effectively reduces misclassifications, it still struggles with identifying all malignant
cases, suggesting the need for further optimization or more sophisticated kernels.

4.3.3 Soft Margin Support Vector Machine with Non-linear
Kernels

To further improve classification performance, the soft margin SVM was applied
using the Radial Basis Function (RBF) kernel. This kernel allows the model to
capture more complex decision boundaries, which are particularly useful in cases
where the data is not linearly separable.
Experiments were conducted on both the full feature set and the top five correlated
feature subset, with the regularization parameter C varied to control the trade-off
between margin maximization and classification error. The accuracy of the model
ranged from 47.98% to 96.15%, indicating that the choice of C plays a significant
role in optimizing the classification skill.
The RBF kernel produced a more flexible and acceptable decision boundary
compared to the linear kernel, especially in handling the non-linearity present in
the data.
Distribution of data points and separation boundaries are shown in Figure 4.5.

(a) Distribution of data points of full dataset
with C = 1.

(b) Distribution of data points of subset with
C = 2.5.

Figure 4.5: Distribution of data points over first two features under soft margin SVM
with RBF kernel

The higher accuracy in the upper range of C values suggests that the model was able
to find an optimal balance between underfitting and overfitting, leading to improved
classification performance across both feature sets.
Table 4.5 presents the performance metrics of the soft margin Support Vector
Machine (SVM) with an RBF kernel applied to two different versions of the dataset:
the full 30-feature set and a reduced subset comprising the top five highly
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correlated features. The regularization parameter C is varied to explore the impact
of the margin’s flexibility on classification performance. The primary objective is to
investigate whether the reduced feature subset offers competitive accuracy and
other performance metrics while lowering computational costs.

Table 4.5: Comparison of performance metrics of full feature set and the five top
correlated subset over the regularization parameter C.

Regularization
parameter

Performance Metrics
30 feature set Top 5 correlated subset

C Acc Sen Spec F1 Acc Sen Sepc F1
1.0 0.956 0.975 0.975 0.950 0.974 0.962 0.980 0.960
1.5 0.959 0.929 0.977 0.945 0.979 0.967 0.986 0.971
2.0 0.958 0.943 0.966 0.943 0.981 0.967 0.988 0.977
2.5 0.961 0.943 0.972 0.947 0.981 0.967 0.988 0.977
3.0 0.950 0.948 0.952 0.934 0.982 0.972 0.988 0.976
3.5 0.608 0.986 0.384 0.652 0.944 0.976 0.988 0.978
4.0 0.479 1.000 0.170 0.589 0.984 0.976 0.988 0.978
4.5 0.441 1.000 0.109 0.574 0.984 0.985 0.983 0.978
5.0 0.954 0.967 0.946 0.940 0.985 0.986 0.986 0.981

From the results, it is clear that the reduced feature subset consistently provides high
accuracy, sensitivity, and specificity across various values of C, comparable to or even
outperforming the full feature set in most cases. This suggests that the five most
correlated features capture sufficient information for effective classification without
requiring the entire feature set, significantly reducing model complexity.

As the regularization parameter C increases, the performance of the full feature set
tends to degrade, especially for extreme values, as indicated by the sharp decline in
accuracy and specificity. However, the reduced feature subset maintains stability
even at higher values of C, with only minor fluctuations in performance metrics.
This highlights the robustness of the reduced subset, particularly under varying
regularization conditions.

A cross-validation is the right method to validate the model’s performance and
ensure that the reduced feature subset does not lead to performance inconsistencies
across different data splits. It helps confirm that the reduced set is a viable and
stable representation for classification. A 5-fold cross validation of the five top
correlated subset is done for each value of the regularization parameter C. Result
of this experiment is shown in Table 4.6.
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Table 4.6: Statistical summary of 5-fold cross validation results

C
Performance Metrics

Accuracy Sensitivity Specificity F1-score
Mean SD Mean SD Mean SD Mean SD

1.0 0.933 0.015 0.924 0.035 0.938 0.021 0.915 0.022
1.5 0.933 0.015 0.938 0.036 0.930 0.017 0.913 0.022
2.0 0.933 0.009 0.943 0.039 0.927 0.018 0.913 0.014
2.5 0.928 0.007 0.948 0.030 0.916 0.010 0.907 0.010
3.0 0.927 0.007 0.948 0.030 0.915 0.010 0.907 0.010
3.5 0.926 0.007 0.948 0.030 0.913 0.018 0.905 0.010
4.0 0.923 0.009 0.948 0.030 0.907 0.021 0.901 0.011
4.5 0.923 0.007 0.948 0.030 0.907 0.021 0.901 0.008
5.0 0.926 0.008 0.953 0.023 0.916 0.016 0.905 0.009

The table summarizes the performance of the Support Vector Machine (SVM)
model with a Radial Basis Function (RBF) kernel across various values of the
regularization parameter C. Key metrics include accuracy, sensitivity, specificity,
and F1-score, along with their corresponding standard deviations.

Key Observations

• Accuracy: The accuracy is quite stable across different values of C, ranging
from 92.3% to 93.3%, with only slight variations.

• Sensitivity: Sensitivity, which measures the model’s ability to correctly identify
positive cases, peaks at C = 5.0 with a mean of 95.3%. Higher sensitivity is
ideal in medical diagnoses, where false negatives are critical.

• Specificity: Specificity, which measures the model’s ability to correctly identify
negative cases, remains consistently around 91.5% to 93.8%. A slight dip is
observed at C = 4.0, but this isn’t drastic.

• F1-Score: The F1-score, which balances precision and recall, stays within a
close range (90.1% to 91.5%), indicating a well-balanced model performance
across all values of C.

• Standard Deviations: Standard deviations across all metrics are relatively low,
implying stable and reliable performance across the cross-validation folds.

Recommendation

Given that the differences in performance across different values of C are minimal,
the value C = 5.0 seems optimal due to its high sensitivity and balanced performance
across other metrics.
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Feature Selection: Top 5 Correlated Features vs. All 30 Features

• Top 5 Correlated Features: The performance with the top 5 correlated
features is strong, as seen from the cross-validation results. The model is
achieving good accuracy, sensitivity, and specificity, while being
computationally less expensive compared to using all 30 features.

• Using All 30 Features: While using all 30 features may marginally improve
the model’s ability to capture more complex patterns, it risks overfitting,
especially if many of the features are redundant or weakly correlated.
Additionally, training with a larger feature set increases computational
complexity.

Considering the consistently strong results with the top 5 correlated features and the
risks associated with high-dimensional feature spaces, it is recommended to proceed
with the top 5 correlated features. This simplifies the model without sacrificing
performance, ensuring better generalization on unseen data.
A final decision can be made by comparing model accuracy on the test dataset for
these two versions. Result of the model performance comparison on training and
test data set is shown in Table 4.7.

Table 4.7

C=5
Performance Metrics

30 feature set Top 5 correlated subset

Metric −→ Training
Accuracy

Test
Accuracy

Training
Accuracy

Test
Accuracy

SVM (RBF Kernel) 1.00 0.898 0.964 0.963
SVM (fitsvm) 0.976 0.965 0.949 0.946

4.4 Skill of Decision Tree Algorithm

The attempt to optimize the decision tree loss function through convex
optimization using the CVX solver has produced subpar results, particularly with an
accuracy of only 0.3726, specificity of 1.00, and a sensitivity of 0.0. These metrics
reveal an imbalanced performance, where the model is essentially overfitting to the
negative class and failing to detect any positive cases, a critical flaw in medical
diagnostic applications. The CVX solver’s warning about relying on successive
approximation suggests challenges in achieving reliable convergence for the
log-likelihood minimization, potentially due to complex non-linearities in the
decision tree objective function. Given these limitations and the resulting low
accuracy, it is recommended to adopt the classical CART (Classification and
Regression Tree) algorithm, readily implemented in MATLAB, which has a
well-established track record for stability and effectiveness in classification tasks.
The decision tree model implemented on the full dataset using MATLAB’s
fitctree() function demonstrates excellent predictive performance across
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multiple evaluation metrics. With an overall accuracy of 0.99, the model achieves a
sensitivity of 0.99, indicating a high rate of correct identification of positive cases,
crucial for minimizing false negatives in a medical context. Specificity of 0.99 and
precision of 0.98 further highlight the model’s ability to discriminate accurately
between classes and minimize false positives. An F1-score of 0.99 and an AUC of
0.99 underscore the balanced and robust performance, making this decision tree
model highly suitable for medical diagnostic applications. Summary of the
performance metrics for decision tree algorithm is shown in Table 4.8.

Table 4.8: Performance Metrics for Decision Tree Model using fitctree().

Metric Value
Accuracy 0.99
Sensitivity 0.99
Specificity 0.99
Precision 0.98
F1-score 0.99
AUC 0.99

Results in Table 4.8 indicates that there are still chances for over-fitting. A 5- fold
cross validation is done to check the consistency of the model performance. Results
of Decision tree classifier on the training and testing dataset is shown in Table 4.9.

Table 4.9: Performance Metrics for Decision Tree Model on training and testing dataset.

Metric Training Testing
Accuracy 0.928 0.908
Sensitivity 0.897 0.857
Specificity 0.940 0.931
Precision 0.876 0.83
F1-score 0.901 0.845
AUC 0.913 0.863

The tree is post-pruned at level five to identify the top five dominant features among
the 30 used in the dataset. The pruned decision tree is shown in Figure 4.6.
The Decision Tree model applied to tumor prediction demonstrates high overall
accuracy (90.8
While these metrics affirm the Decision Tree model as a suitable tool for tumor
classification, there is room for improvement, especially in sensitivity to minimize
missed tumor detections. Given its interpretability and ease of use, this model is
valuable in clinical settings, where transparency is essential. However,
incorporating ensemble methods like Random Forests may improve sensitivity
without significantly impacting specificity, enhancing the model’s reliability in a
medical diagnostic context.
The initial model exhibited higher performance metrics, the cross-validation results
provide a more robust and trustworthy evaluation, emphasizing the necessity of
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radius worst < 16.795

concave point worst
< 0.1358

Class 0
texture worst
< 0.0626

Class 0 Class 1

radius worst
> 16.795

texture mean
> 16.11

Class 1
concave point mean

< 0.6626

Class 0 Class 1

Figure 4.6: Post-pruned decision tree at level five.

employing rigorous validation methods to ensure the reliability of machine learning
applications in medical diagnostics.
From the post-pruned decision tree shown in Figure 4.6, the top five dominant
features are extracted and compared with those listed from the correlation analysis
shown in Table 3.7. Result of this comparison is shown in Table 4.10.

Table 4.10: Comparison of dominant features identified from two approaches.

Rank Decision Tree Correlation Analysis
1 Radius worst Concave point worst
2 Concave point worst Area worst
3 Texture worst Perimeter worst
4 Texture mean Concave point mean
5 Concave point mean Radius worst

The differences in feature rankings between the decision tree approach and
feature-target correlation analysis stem from their distinct methodologies.
Correlation analysis captures linear relationships, using metrics like Pearson’s
correlation coefficient to rank features based on how strongly they associate with
the target variable. This method highlights features like Concave point worst that
exhibit strong linear correlations. In contrast, decision trees employ information
gain to identify features that significantly reduce uncertainty in classification,
capturing complex, non-linear interactions. For instance, Radius worst ranks highest
in the decision tree, indicating its critical role in distinguishing classes, which may
not be evident through linear correlation alone.
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These disparities emphasize the necessity of choosing analytical methods suited to
the data’s nature. While correlation analysis can provide initial insights into feature
importance, it risks overlooking significant non-linear relationships essential for
accurate classifications. By integrating both methods, researchers can enhance
feature selection and model performance, ensuring a more comprehensive
understanding of the factors influencing tumor classification. This approach
ultimately leads to improved diagnostic accuracy in clinical settings, as it combines
the strengths of both linear and non-linear analyses.

Both the decision tree and correlation analyses identify key features relevant to
breast cancer classification. Radius worst and Concave point worst are significant in
both rankings, with Radius worst leading in the decision tree analysis while
Concave point worst tops the correlation analysis. Additionally, Concave point
mean appears in both approaches, albeit in different ranks, highlighting its
importance. Texture mean is also notable in the decision tree but is absent from the
correlation analysis. These common features illustrate the complementary nature of
the two methodologies in identifying influential variables for breast cancer
prediction.

4.5 Skill of Soft Margin SVM with RKS Kernels

In this section, we present the outcomes of utilizing the Random Kitchen Sinks
(RKS) kernel in conjunction with the soft margin Support Vector Machine (SVM)
classifier. Building upon previous experiments that included logistic regression, its
regularized variants, SVM with both hard and soft margins, and decision tree
classifiers, our exploration of the RKS kernel revealed its remarkable capability to
capture non-linear relationships in the data. The experiments demonstrated that
the RKS kernel not only effectively handled non-linearly separable datasets but also
significantly enhanced classification performance. The results indicated a
substantial improvement in accuracy and robustness, underscoring the
transformative potential of the RKS kernel for complex classification tasks.

From the experiments, it is found that the regularization parameter C > 0 has no
significant effect outside [0.5, 10]. But the number of random features of RKS
(dimension) has a potential impact in classification power of soft margin SVM.
Table 4.11 shows this result.

64



4.5. Skill of Soft Margin SVM with RKS Kernels Chapter 4. Results and Discussions

Table 4.11: Comparison of performance metrics of soft margin SVM with RKS kernel
over the regularization parameter C.

Random
Features

Performance Metrics
C = 5 C = 10

d Acc Sen Spec F1 Acc Sen Sepc F1
25 0.70 0.86 0.43 0.52 0.70 0.86 0.43 0.52
50 0.73 0.84 0.55 0.60 0.74 0.84 0.55 0.60
75 0.81 0.88 0.68 0.72 0.81 0.89 0.68 0.73
100 0.87 0.90 0.81 0.82 0.87 0.91 0.79 0.82
125 0.92 0.94 0.88 0.89 0.93 0.96 0.89 0.91
150 0.99 0.99 0.98 0.98 1.00 1.00 1.00 1.00
156 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

From Table 4.11, the soft margin SVM with RKS kernel is over-fitted. So consistency
of this model is verified with a 5-fold cross validation. For various d values, the
model shows very low performance measures. Even with d = 900 and d = 1500,
the model produced the same performance measures. Separating boundaries of soft
margin SVM with RKF kernel is shown in Figure 4.7.

(a) Distribution of data points over first two
features under soft margin SVM (RKS, d = 156).

(b) Distribution of data points under cross
validated soft margin SVM (RKS,d = 1500).

Figure 4.7: Distribution of data points over first two features under soft margin SVM
with RKS kernel.

After many trials the maximum values for the average performance measures of the
5-fold cross validated soft margin SVM with RKS kernel is included in Table 4.12.
Thus, the RKS kernel allows for a practical and efficient approximation of the RBF
kernel, particularly suitable for cases where d≪ N , bypassing the need for expensive
Gram matrix operations while retaining high classification capability on non-linear
datasets. This approach can, however, lead to under fitting if d is too small, as the
random feature map may not adequately capture all the complex structures in the
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data, which could explain the observed decline in performance under 5-fold cross-
validation with an insufficient basis size d.

4.6 Model Comparison and Conclusion

In this medical dataset, where diagnostic accuracy and sensitivity are paramount,
several models were tested for their predictive performance. Table 4.12 summarizes
the training results across different models, number of features used, and key
performance metrics (accuracy, sensitivity, specificity, F1-score).

Table 4.12: Performance Metrics of Models

Algorithm # Features Accuracy Sensitivity Specificity F1-score
Logistic 30 0.96 0.93 0.98 0.96
Logistic+L1 30 0.97 0.96 0.98 0.96
SVM (RBF) 30 1.00 1.00 1.00 1.00
SVM (RBF) 5 0.98 0.98 0.98 0.98
SVM (RBF, 5-fold) 5 0.93 0.92 0.94 0.91
SVM (RKS) 30 1.00 1.00 1.00 1.00
SVM (RKS,5-fold) 30 0.52 0.38 0.30 0.32
fitgm() + L1 30 0.97 0.96 0.98 0.96
fitsvm() 5 0.97 0.96 0.99 0.97
fitctree() 30 0.99 0.99 0.99 0.99
fitctree()+5-fold 30 0.92 0.89 0.94 0.90

4.6.1 Model Performance Analysis and Recommendations

Based on the performance metrics in Table 4.12, this section interprets each model’s
suitability for medical diagnosis by comparing their accuracy, sensitivity, specificity,
and F1-score.

• Superior Performance with SVM (RBF Kernel): The SVM with RBF kernel
achieves an accuracy, sensitivity, specificity, and F1-score of 1.00 across all
metrics when using 30 features, suggesting exceptional capability in
distinguishing classes effectively. When reduced to 5 features, this model still
performs well (accuracy, sensitivity, specificity, and F1-score all at 0.98),
demonstrating robustness in both feature-rich and reduced-feature contexts.
However, under 5-fold cross-validation, its metrics drop to 0.93 accuracy, 0.92
sensitivity, 0.94 specificity, and 0.91 F1-score, indicating slight variability with
increased complexity.

• Instability in SVM with Random Kitchen Sink (RKS) Kernel: Although the
SVM with RKS kernel shows perfect scores (1.00 across all metrics) with 30
features in a non-cross-validated setting, it experiences a sharp performance
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decline under 5-fold cross-validation. The results fall to 0.52 accuracy, 0.38
sensitivity, 0.30 specificity, and 0.32 F1-score, reflecting substantial instability
and limited generalization. While RKS can effectively capture non-linear
separability in simple settings, the cross-validation results suggest it may be
unreliable for clinical applications requiring consistent performance.

• High Accuracy with Interpretability in fitctree Model: The fitctree model
demonstrates excellent performance (0.99 in accuracy, sensitivity, specificity,
and F1-score) with all 30 features, indicating reliable classification ability. This
decision tree model offers interpretability, as it ranks feature importance, a
valuable trait for medical diagnostics where understanding feature influence is
critical. While cross-validation reduces its metrics slightly (0.92 accuracy, 0.90
sensitivity, 0.94 specificity, and 0.90 F1-score), it remains robust, highlighting
its value for transparent and interpretable diagnosis.

• Feature-Efficient Alternatives: Both Logistic regression with L1 regularization
and the fitsvm model with 5 features demonstrate competitive results, with
accuracies of 0.97 for Logistic+L1 and fitsvm, and F1-scores of 0.96 and 0.97,
respectively. These models perform well with reduced feature sets, making
them feasible options when computational efficiency or minimal feature use is
essential.

Recommendation: For reliable, interpretable medical diagnostics, the fitctree
model with all 30 features is recommended for its high performance across all
metrics and transparency in feature importance. If feature efficiency is prioritized,
the fitsvm model with 5 features offers an effective trade-off between performance
and simplicity.

4.7 Unsupervised Approach for Explainable Models

In medical diagnosis, especially with datasets involving various cancer indicators,
binary classification might overly simplify the inherent patterns. The notion that
cancers can vary in stages aligns with the understanding that medical conditions
often manifest in gradients of severity rather than clear-cut classes. In this scenario,
clustering could offer a richer segmentation of the data, possibly aligning with
underlying stages or risk profiles of the condition, which binary classification may
overlook.

4.7.1 Experiment Interpretation

In this experiment, the objective was to identify the optimal number of clusters for
the breast cancer dataset using K-means clustering. A grid search cross validation
approach is used to find optimal number of clusters. Figure 4.8a shows the
distribution of inertia over number of clusters. Since the slope of the tangent of the
inertia is not further decreased significantly after k = 3, optimal number of cluster
is fixed to 3.
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(a) Elbow plot demonstrating distribution of
inertia over number of clusters.

(b) Distribution of data points under K-means
clustering (k = 3).

Figure 4.8: Skill of K-means clustering model.

The analysis revealed that k = 3 is the most suitable number of clusters, as
determined by the elbow method. This conclusion was supported by both the
silhouette distance and the within-cluster sum of squares (WCSS) measures.
The minimum distance recorded during clustering is 4.726× 10−7, indicating a high
level of compactness within the clusters. This suggests that the data points within
each cluster are closely grouped together, reflecting the effectiveness of the
clustering algorithm in delineating the data structure. Furthermore, the overall
silhouette score of 0.6637 indicates a reasonable level of separation between the
clusters. A silhouette score ranges from -1 to +1, where values closer to +1 denote
well-defined clusters, values around 0 indicate overlapping clusters, and negative
values suggest that data points may have been assigned to the wrong cluster.
Therefore, a score of 0.6637 signifies that the clusters are relatively well-defined,
although there is still room for improvement.
The support for the identified clusters showed a distribution of 425 points in Cluster
1, 123 points in Cluster 2, and 21 points in Cluster 3. This distribution indicates that
the majority of the data points (approximately 74.69%) belong to Cluster 1, which
may represent a predominant diagnosis category, potentially benign cases. Cluster
2 comprises 21.62% of the points, suggesting a secondary category, while Cluster
3, containing only 3.69% of the data, may represent an outlier group or a specific
sub-type of malignant cases.
The subsequent phase of this analysis will involve examining the distribution of
benign and malignant cases within the identified clusters. By evaluating how these
diagnosis categories are represented in each cluster, we can gain insights into the
relationship between clustering results and the underlying characteristics of the
data. This analysis will be critical in determining the effectiveness of the clustering
algorithm in distinguishing between benign and malignant cases and
understanding the clinical implications of these findings.
Table 4.13 demonstrate the distribution of Benign and Malignant cases over the
identified clusters through K-means clustering.
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Table 4.13: Distribution of Benign and Malignant cases over clusters.

Cluster
Diagnosis

TotalBenign Malignant
Count % Count %

C1 355 83.53 70 16.47 425
C2 2 1.63 121 98.37 123
C3 0 0.00 21 100.0 21

Total cleaned samples 569

The clustering results shown in Table 4.13 reveal that Cluster 1 (C1) predominantly
comprises benign cases, with 83.53% of the total 425 samples classified as benign.
Conversely, Cluster 2 (C2) exhibits a significant majority of malignant cases,
accounting for 98.37% of the 123 samples in that cluster. Notably, Cluster 3 (C3)
consists entirely of malignant cases, indicating a critical subset of patients who may
be at higher risk for severe breast cancer.

4.8 Conclusion

The Clustering approach enhances our understanding of patient categorization
beyond traditional classification methods. By segmenting patients into distinct
clusters based on their diagnosis, we can prioritize further treatment and
intervention strategies for those identified within the higher-risk clusters.
Specifically, patients in C2 and C3 should be closely monitored and provided with
targeted treatment plans due to their higher likelihood of having malignant
conditions.

In a public health context, these insights are invaluable for designing community
treatment plans and executing an organized public health management system,
particularly in highly populated countries where the incidence of breast cancer is
rising. By identifying which patients and what fraction of patients face the threat of
severe breast cancer, healthcare administrators can allocate resources more
effectively, ensuring that high-risk populations receive timely and appropriate care.

In conclusion, the incorporation of clustering analysis provides a prescriptive add-
on to classification models. It allows us to go beyond merely determining whether
a person is a cancer patient or not; it aids in understanding the severity of their
condition and facilitates a more nuanced approach to patient management. This will
ultimately contribute to improved health outcomes through tailored public health
initiatives.
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4.9 Future Directions and Sustainable Impact of
Explainable Machine Learning in Medical
Diagnosis

Based on the performance metrics in Table 4.12, we can interpret each model’s
suitability for medical diagnosis by comparing their accuracy, sensitivity, specificity,
and F1-score:

• Superior Performance with SVM (RBF Kernel): The SVM with RBF kernel
achieves an accuracy, sensitivity, specificity, and F1-score of 1.00 across all
metrics when using 30 features, suggesting exceptional capability in
distinguishing classes effectively. When reduced to 5 features, this model still
performs well (accuracy, sensitivity, specificity, and F1-score all at 0.98),
demonstrating robustness in both feature-rich and reduced-feature contexts.
However, under 5-fold cross-validation, its metrics drop to 0.93 accuracy, 0.92
sensitivity, 0.94 specificity, and 0.91 F1-score, indicating slight variability with
increased complexity.

• Instability in SVM with Random Kitchen Sink (RKS) Kernel: Although the
SVM with RKS kernel shows perfect scores (1.00 across all metrics) with 30
features in a non-cross-validated setting, it experiences a sharp performance
decline under 5-fold cross-validation. The results fall to 0.52 accuracy, 0.38
sensitivity, 0.30 specificity, and 0.32 F1-score, reflecting substantial instability
and limited generalization. While RKS can effectively capture non-linear
separability in simple settings, the cross-validation results suggest it may be
unreliable for clinical applications requiring consistent performance.

• High Accuracy with Interpretability in fitctree Model: The fitctree model
demonstrates excellent performance (0.99 in accuracy, sensitivity, specificity,
and F1-score) with all 30 features, indicating reliable classification ability. This
decision tree model offers interpretability, as it ranks feature importance, a
valuable trait for medical diagnostics where understanding feature influence is
critical. While cross-validation reduces its metrics slightly (0.92 accuracy, 0.90
sensitivity, 0.94 specificity, and 0.90 F1-score), it remains robust, highlighting
its value for transparent and interpretable diagnosis.

• Feature-Efficient Alternatives: Both Logistic regression with L1 regularization
and the fitsvm model with 5 features demonstrate competitive results, with
accuracies of 0.97 for Logistic+L1 and fitsvm, and F1-scores of 0.96 and 0.97,
respectively. These models perform well with reduced feature sets, making
them feasible options when computational efficiency or minimal feature use is
essential.
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Chapter 5

Conclusions

This project work has outlined a comprehensive, mathematically grounded
framework for classifying breast tissue as benign or malignant using the UCI Breast
Cancer Wisconsin dataset. Addressing a critical need for precise diagnostics in
oncology, our research combined supervised and unsupervised machine learning
models with careful data preprocessing and robust optimization techniques,
resulting in both high accuracy and interpretability.
Our methodology commenced with an extensive preprocessing phase to enhance
data quality and model reliability. Data imbalances, multicollinearity, and outliers
were carefully managed using statistical techniques such as the Interquartile Range
(IQR) method and square root transformations, which refined the feature space. This
allowed us to construct models on a foundation of clean, normalized data, reducing
the risk of model bias and enhancing the accuracy of predictive insights.
A diverse set of classification models was employed, including logistic regression,
support vector machines (SVM), and decision trees. Logistic regression served as a
robust baseline, effectively capturing linear relationships between features and the
target variable. However, SVM proved particularly valuable due to its formulation
as a convex optimization problem, enabling it to maximize the margin between
classes while maintaining computational efficiency. This approach, solved using
Lagrange multipliers, was especially effective in high-dimensional spaces where
data separability is complex. The use of both linear and non-linear kernels in SVM
further allowed the model to capture intricate patterns within the dataset,
achieving significant diagnostic accuracy.
Incorporating decision trees added interpretability, making it easier to understand
feature importance—an aspect critical to healthcare professionals who require
transparency in model decision-making. By using ensemble methods, such as
Random Forest, we further improved model stability, reducing overfitting risks and
offering consistent classification results across different subsets of data. This blend
of models underscored the importance of balancing complexity and interpretability,
a trade-off that is essential in applications where the insights must be
understandable and actionable.
Additionally, K-means clustering was introduced as an unsupervised learning
approach, supplementing classification by revealing underlying patterns and group
structures. Through clustering, we were able to compare cluster assignments with
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actual diagnoses, providing valuable insights into misclassified cases and
highlighting clusters that exhibited similar tumor characteristics. This dual
approach of classification and clustering augmented the overall interpretability and
reliability of the model outcomes, allowing for a multi-layered diagnostic tool that
could aid clinicians in detecting cancerous tissue with greater confidence.
The results demonstrated that SVM with non-linear kernels and regularization
techniques delivered the highest accuracy, effectively classifying malignant versus
benign cases. Meanwhile, logistic regression provided a more interpretable baseline
for diagnosis, making it suitable as a complementary model for quick assessments.
The clustering analysis supplemented these findings, enabling a more nuanced
understanding of how different features influence classification and adding an extra
dimension of diagnostic precision.
Recommendation: For reliable, interpretable medical diagnostics, the fitctree
model with all 30 features is recommended for its high performance across all
metrics and transparency in feature importance. If feature efficiency is prioritized,
the fitsvm model with 5 features offers an effective trade-off between performance
and simplicity.
Building on the insights derived from clustering and the aforementioned supervised
learning methods, there lies a significant opportunity to explore Explainable
Machine Learning models. These models can elucidate the reasoning behind
patient classifications, detailing why a patient is considered affected, the stage of
cancer they may be in, and the implications for their treatment. By providing
interpretable and actionable insights, Explainable ML not only augments clinical
decision-making but also empowers healthcare professionals to deliver personalized
patient care.
In the context of public health management, the adoption of informed diagnostic
tools based on Explainable ML can greatly enhance the treatment and management
of health systems, particularly for underserved populations. It facilitates a
comprehensive understanding of patient needs, enabling targeted interventions
that are both efficient and equitable. This informed approach to diagnosis not only
improves patient outcomes but also supports the sustainability of healthcare
systems by optimizing resource allocation and reducing unnecessary procedures.
Moreover, the alignment of such research initiatives with the United Nations’
Sustainable Development Goals (SDGs) is crucial. Specifically, this work contributes
to SDG 3 (Good Health and Well-Being) by promoting health equity and ensuring
that all individuals have access to essential health services. The integration of
Explainable ML in medical education can foster a new generation of healthcare
professionals who are adept at leveraging data-driven insights while maintaining a
patient-centered approach. This transition is pivotal for achieving not only
individual health improvements but also broader systemic changes that promote
public health sustainability.
In conclusion, the incorporation of Explainable Machine Learning in medical
diagnosis paves the way for innovative solutions that prioritize patient welfare and
health system efficiency. By addressing the complexities of cancer diagnosis and
treatment, we can make significant strides toward fulfilling the SDGs, particularly
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in the realms of health equity, education, and sustainable public health
management.
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