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Abstract

Singular Value Decomposition (SVD) has recently gained significant

attention as a transformative approach in image processing. As a robust

algebraic tool, SVD demonstrates unique capabilities for various imaging

applications, yet its full potential remains underutilized. This study presents an

experimental evaluation of SVD as an effective transform method in image

processing, highlighting its versatile properties that can be leveraged for

emerging applications. The project work explores these SVD properties through

a series of imaging experiments, providing insights into its utility and

recommending future research directions. By examining existing SVD-based

techniques and proposing new applications derived from SVD’s structural

attributes, this study aims to deepen understanding of SVD’s role in advancing

image processing and to promote further exploration into its applications and

research challenges.
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2 Related works

1 Introduction

Linear Algebra based SVD is a powerful method to be used within the realm of digital

image processing. SVD decomposes a matrix in to three constitutive matrices U, S,

and V, thus making it possible to represent an image using a fewer number of values

[1]. This characteristic has practical usage such as for image compression by keeping

few singular values in S matrix and stores the characteristics feature of the image,

hence reduce storage.

Researches suggested that It can be done if appropriate number of singular values

maintained and image can be compressed at higher ratio with good quality The

number of singular values kept (and thus the size of the image to be compressed)

is always not more (and often far less) than the number of pixels in the original

image. Thus, SVD turns out to be a relatively strong technique for applications where

a minimum number of storage space and bandwidth is required to be preserved

during transmission of signals such as in satellite imagery, medical imaging and

photo enhancement.

Singular Value Decomposition (SVD) is a powerful mathematical technique with a

diverse range of applications in image processing. While its capabilities are

well-established, there remains untapped potential in fully harnessing its versatility.

This paper delves into the rich properties of SVD and demonstrates how they can be

leveraged across various image processing tasks, such as compression,

watermarking, and quality assessment.

The study presents several key findings. First, the experiments validate known but

underutilized characteristics of Singular Value Decomposition (SVD) in the context

of image processing. This serves to aid ongoing efforts aimed at enhancing the

application of these SVD characteristics. Second, the research identifies new trends

and challenges faced in the application of SVD for image processing. Some of these

trends are corroborated by experimental data, while others require additional

verification. Finally, this work lays the groundwork for future investigations,

highlighting promising avenues for further exploration and development.

Overall, this work offers a comprehensive examination of the rich properties of

Singular Value Decomposition (SVD) and its multifaceted applications in the field

of image processing. By shedding light on both the established and emerging

aspects of SVD, the study paves the way for more efficient and innovative

applications of this powerful mathematical technique.

2 Related works

Andrews and Patterson (1976) explored the significant role of Singular Value

Decomposition (SVD) techniques in the realm of digital image processing,

particularly for applications that demand high computational power and precise

imaging capabilities. Their work highlighted the versatility of SVD methods, which

are applicable not only to images but also to broader representations of point

spread functions (PSF) and impulse responses. The authors framed these

1



2 Related works

techniques as natural extensions of linear filtering theory, thereby situating SVD

within established methodologies for image enhancement and restoration [2].

Moonen et al. (1992) expanded upon the established QR updating scheme by

introducing a more versatile and generally applicable method for updating the

Singular Value Decomposition (SVD). Their approach enhances the QR updating

technique by integrating a Jacobi-type SVD procedure. This innovative combination

allows for the effective restoration of an acceptable approximation of the SVD after

only a few SVD steps following each QR update. The authors demonstrated that

this method not only maintains a comparable computational cost to that of

traditional QR updating but also significantly reduces the overall computational

burden associated with SVD updates.[1].

In their paper, Kakarala and Ogunbona (2001) introduced a novel

multiresolution form of Singular Value Decomposition (SVD) designed for

enhanced signal analysis and approximation. Recognizing the inherent strengths of

traditional SVD—specifically its optimal decorrelation and subrank approximation

properties—the authors expanded upon these foundations by developing a

multiresolution approach that maintains linear computational complexity [3].

D Chandra (2002) introduced a novel watermarking technique- scaled additive

approach- for digital images that employs Singular Value Decomposition (SVD) as

a foundational method. The paper provides comprehensive simulation results that

showcase the robustness of this SVD-based watermarking approach against various

common image degradations, underscoring its effectiveness in preserving watermark

integrity in challenging conditions [4].

Sadek (2008) explored the increasing prominence of Singular Value

Decomposition (SVD) as a robust and reliable technique for orthogonal matrix

decomposition in the field of signal processing, particularly in the context of

watermarking and data hiding. The author highlighted the fundamental properties

of SVD, such as its conceptual clarity and stability, which contribute to its growing

popularity in various applications In the realm of watermarking, many researchers

have focused on leveraging the singular values of host images to embed hidden

information. However, Sadek introduced a critical examination of these SVD-based

watermarking techniques by presenting a counterfeiting attack specifically targeting

the embedded watermark information within the singular values. The study

underscored the inherent vulnerabilities of this class of watermarking methods,

revealing how singular values can be easily compromised through a broad spectrum

of image processing operations and deliberate attacks [5].

Sadek (2012) explores the potential of Singular Value Decomposition (SVD) as a

transformative tool in the realm of image processing. The paper presents a

comprehensive experimental survey highlighting SVD’s efficacy across various

2



3 Introduction to Singular Value Decomposition (SVD)

imaging applications and proposed the perceptual forensic approach in image

watermarking. Recognizing SVD as an attractive algebraic transform, Sadek

emphasizes that its application in image processing is still in its early stages despite

its well-documented advantageous properties [6].

In their study, Kahu and Rahate (2013) investigated the application of Singular

Value Decomposition (SVD) as a technique for image compression, emphasizing its

effectiveness in expressing image data through a limited number of eigenvectors

determined by the image’s dimensionality. They highlighted the significance of

psycho-visual redundancies inherent in images, which enable compression without

compromising the quality of the visual output [7].

3 Introduction to Singular Value Decomposition

(SVD)

In linear algebra, Singular Value Decomposition (SVD) is a fundamental

factorization technique for rectangular real or complex matrices. It provides a

structure similar to the diagonalization of symmetric or Hermitian square matrices,

utilizing eigenvectors as a basis. SVD is particularly advantageous due to its

stability and effectiveness, allowing for decomposition into a set of linearly

independent components, each contributing uniquely to the matrix’s structure.

For a digital image X of size M × N (where M ≥ N), the SVD of X is represented

as:

X = UΣV T

where U is an M ×M orthogonal matrix, V is an N ×N orthogonal matrix, and Σ is

an M ×N diagonal matrix. The matrices U = [u1, u2, . . . , um] and V = [v1, v2, . . . , vn]
contain the left and right singular vectors of X, respectively, and Σ holds the singular

values σi of X along its diagonal in descending order of magnitude, with all off-

diagonal elements set to zero.

In this setup, U and V are unitary orthogonal matrices, meaning that each column

vector has a unit norm and is orthogonal to others. The singular values σi in Σ
indicate the energy contribution of each corresponding component, while each pair

of singular vectors from U and V defines the spatial orientation or geometry of these

components.

The left singular vectors (LSCs) of X are the eigenvectors of the matrix XXT , while

the right singular vectors (RSCs) are eigenvectors of XTX. Each singular value

represents the 2-norm of its associated component, with the largest singular values

capturing the most significant patterns or features in the data. This property allows

SVD to effectively highlight essential image components while suppressing noise

or less critical features, making it ideal for applications focused on key structural

features in image processing [2].

3
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4 SVD- A New Tool for Image Processing

Singular Value Decomposition (SVD) is a powerful and robust method for

orthogonal matrix decomposition, widely valued for its stability and conceptual

clarity. These attributes have led to its growing popularity in signal processing,

particularly in the domain of image processing. As an algebraic transformation,

SVD brings several advantageous properties to imaging, which this section

examines. While some of these properties are well-utilized, others present

opportunities for further exploration and application.

Several key properties of SVD make it particularly useful in image processing.

These include maximum energy packing, efficient solutions to least squares

problems, calculation of matrix pseudo-inverses, and multivariate analysis [8]. An

essential feature of SVD is its relationship to matrix rank and its ability to

approximate matrices at a given rank. Digital images, often represented as low-rank

matrices, can be effectively described by a limited number of eigenimages. This

approach allows image signals to be manipulated in two distinct subspaces [9].

In the sections that follow, key hypotheses related to these properties are proposed

and validated. For completeness, the theoretical SVD theorems relevant to these

applications are summarized, followed by a practical review of SVD properties with

experimental demonstrations.

4.1 SVD subspaces and architecture

The SVD method effectively divides a matrix into two orthogonal subspaces: the

dominant and subdominant subspaces. This division corresponds to a partitioning

of the M -dimensional vector space, separating primary signal components from

secondary ones [2, 9]. Such a property is particularly advantageous in applications

like noise filtering and digital watermarking, where isolating signal elements from

noise or embedding data is crucial [4, 6].

In the context of image processing, SVD architecture further highlights its utility. For

an image decomposed via SVD, each singular value (SV) represents the luminance

level of a specific image layer, while the associated singular vectors (SCs) provide

the geometric structure of that layer. Generally, prominent image features align with

eigenimages associated with larger singular values, while smaller singular values

correspond to components associated with noise [7].

4.2 PCA versus SVD

Principal Component Analysis (PCA), also known as the Karhunen-Loève Transform

(KLT) or the Hotelling Transform, is a technique for computing dominant vectors that

represent a given dataset. PCA achieves an optimal basis for minimum mean squared

reconstruction of data and is computationally based on the SVD of the data matrix or

the eigenvalue decomposition of the data covariance matrix. SVD is closely related to

the eigenvalue-eigenvector decomposition of a square matrix X into V ΛV T , where V

is orthogonal, and Λ is diagonal. Notably, the matrices U and V in SVD correspond to

4



4.3 SVD Multiresolution 5 Optimal Approximation and Noise Isolation Using SVD

eigenvectors of XXT and XTX, respectively. If X is symmetric, the singular values

of X are the absolute values of its eigenvalues [8, 10].

4.3 SVD Multiresolution

SVD is known for its maximum energy packing capability, making it particularly

useful for applications requiring multiresolution analysis. This approach enables

statistical characterization of images across multiple resolutions, with SVD

decomposing a matrix into orthogonal components that allow optimal sub-rank

approximations. The multiresolution properties of SVD provide a framework to

measure several critical image characteristics at various resolutions, including

isotropy, sparsity of principal components, self-similarity under scaling, and

decomposition of mean squared error into meaningful components [3].

4.4 SVD oriented energy

In SVD-based analysis of oriented energy, both the rank of the problem and the

signal space orientation are identifiable. SVD allows decomposition into linearly

independent components, each with its own energy contribution. Represented as a

linear combination of principal components, SVD highlights dominant components

that define the rank of the observed system, with a few key components effectively

capturing the system’s structure. The concept of oriented energy is beneficial for

separating signals from different sources or selecting signal subspaces with maximal

activity and integrity. Singular values in SVD represent the square root of energy in

the corresponding principal direction, with the primary direction often aligned with

the first singular vector V1. Dominance accuracy can be measured by evaluating the

difference, or normalized difference, between the first two singular values [3, 5].

Many properties of SVD remain underutilized in image processing applications.

Subsequent sections will experimentally explore these unexploited properties to

demonstrate their potential for enhancing various image processing techniques.

Additional research is essential to fully harness this versatile transformation in new

and evolving applications.

5 Optimal Approximation and Noise Isolation Using

SVD

The SVD’s unique ability to distinguish image content from noise is critical for

efficient matrix approximation. In an SVD-decomposed matrix, the highest singular

values capture the most essential components of the image, while lower singular

values represent noise. By reconstructing the matrix with only the top k singular

values—forming an approximation Xk = UkΣkV
T
k —SVD yields an optimal

representation that preserves primary image features while suppressing noise. This

characteristic makes SVD ideal for noise filtering, compression, and forensic

5



6 Example of SVD Application: Image Reconstruction5.1 Rank approximation using SVD

applications, where detectable noise patterns are useful in watermarking and signal

integrity assessment.

5.1 Rank approximation using SVD

Singular Value Decomposition (SVD) facilitates low-rank approximation, enabling

optimal sub-rank representations by emphasizing the largest singular values that

encapsulate the majority of the energy within an image. SVD illustrates that a matrix

can be expressed as a sum of rank-one matrices. Given a matrix X ∈ R
m×n with

p = min(m,n), the approximation can be represented as a truncated matrix Xk with

a specified rank k. The representation is formulated as follows:

X ≈ Xk =
k

∑

i=1

siuiv
T
i ,

where si are the singular values, ui are the left singular vectors, and vi are the right

singular vectors. Each term siuiv
T
i corresponds to a rank-one matrix, leading to the

conclusion that X is the sum of k rank-one matrices. This approximation captures as

much of the “energy” of X as possible while maintaining a rank of at most k. Here,

“energy” is quantified using the 2-norm or Frobenius norm.

The outer product uiv
T
i results in a matrix of rank 1, requiring M + N storage

compared to M × N for the original matrix. For truncated SVD transformations

with rank k, the required storage space is reduced to (m + n + 1)k, demonstrating

the efficiency of SVD in applications such as image compression and watermarking.

6 Example of SVD Application: Image Reconstruction

In this section, we demonstrate the application of Singular Value Decomposition

(SVD) on a JPEG image obtained from the internet. The image is subjected to low-

rank approximation using SVD to explore its effectiveness in image reconstruction

and compression.

For this experiment, we set the rank k = 40. The original image, denoted as X, is

decomposed into its singular values and singular vectors as follows:

X = USV T ,

where U is an orthogonal matrix containing the left singular vectors, S is a diagonal

matrix of singular values, and V T contains the right singular vectors. By retaining

only the top k singular values and their corresponding singular vectors, we can

reconstruct a low-rank approximation of the image:

Xk ≈
k

∑

i=1

siuiv
T
i .

6



6.1 Secrets of Singular Matrices 6 Example of SVD Application: Image Reconstruction

In this instance, the low-rank approximation captures a significant portion of the

image’s energy, effectively preserving the essential visual features while reducing

the noise and detail represented by the higher-order singular values.

The reconstructed image using k = 40 is displayed in Figure 1. This result illustrates

the ability of SVD to maintain the overall structure and key characteristics of the

original image while achieving a notable reduction in data size. The efficiency of

this low-rank approximation highlights the potential of SVD for applications in image

compression and restoration, allowing for storage savings without substantial loss of

quality.

This example underscores the practical utility of SVD in image processing, offering

a powerful tool for manipulating image data in various applications, including

compression, denoising, and feature extraction.

Figure 1: Reconstructed image using SVD with low-rank approximation (k=40).

6.1 Secrets of left and right singular matrices

The matrices U and V T provide crucial insights into the structural characteristics of

the image, specifically the column space and row space representations.

The left singular matrix U captures the column space of the image, which

represents the various features and patterns present in the image across its vertical

axis. In contrast, the right singular matrix V T captures the row space of the image,

representing patterns across the horizontal axis. By visualizing the first two

components of these matrices, we can reconstruct the primary patterns within the

image.

The first two components of the column space from matrix U highlight the

dominant vertical patterns, while the first two components of the row space from

matrix V T reveal the dominant horizontal patterns. This reconstruction allows for a

clear interpretation of how the image is constructed from these fundamental

features, showcasing the spatial relationships inherent in the image data.

It is important to note that the components of V associated with the smallest

singular values correspond to noise in the image. This noise resides in the null

space of the image matrix X and contributes minimally to the overall structure of

the image. By identifying these components, we can effectively distinguish between

the essential features of the image and the extraneous noise that may obscure its

7



6 Example of SVD Application: Image Reconstruction 6.1 Secrets of Singular Matrices

true representation.

(a) Left singular matrix U capturing the

column space of the image.

(b) Right singular matrix V
T capturing the

row space of the image.

Figure 2: Visualization of the components obtained from the SVD of the image.

Figure 3 displays the log-mod distribution of the singular values from the SVD of the

image, providing insight into the energy contributions of each component.

Figure 3: Distribution of the singular values of the image.

The log-mod distribution of the singular values reveals crucial information about

the image’s structure and the underlying data’s dimensionality. The singular values,

arranged in descending order, represent the amount of energy each corresponding

eigenimage contributes to the overall image representation.

From Figure 3, a rapid decay in singular values indicates that a small number of

components capture the majority of the image’s energy, signifying a low-rank

structure. This property is advantageous for compression, as it suggests that the

image can be approximated using fewer outer products of rank-one matrices, thus

minimizing information loss.

8



6.2 Image quality metrics 6 Example of SVD Application: Image Reconstruction

The slope of the log-mod distribution further elucidates the significance of each

singular value; a steep drop-off signifies that most information is concentrated in

the first few singular values, while the tail end, characterized by smaller singular

values, is associated with noise and less informative features of the image. This

insight allows for strategic selection of singular values in applications such as

compression and denoising, where retaining the dominant components while

discarding those associated with lower energy can enhance the overall quality of

the reconstructed image.

6.2 Image quality metrics

In the context of image compression and reconstruction using Singular Value

Decomposition (SVD), it is essential to evaluate the quality of the reconstructed

image. Three popular metrics for assessing image quality are the Mean Squared

Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index

Measure (SSIM). Each of these metrics provides a different perspective on the

quality of the reconstructed image compared to the original.

6.2.1 Mean Squared Error (MSE)

The Mean Squared Error is a measure of the average squared differences between

the original and reconstructed images. It is defined mathematically as:

MSE =
1

N

N
∑

i=1

(I(i)− Î(i))2

where I(i) is the pixel value of the original image, Î(i) is the pixel value of the

reconstructed image, and N is the total number of pixels in the image. Lower MSE

values indicate better image quality.

6.2.2 Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio is a logarithmic measure that compares the maximum

possible power of a signal to the power of corrupting noise that affects the fidelity of

its representation. It is given by:

PSNR = 10 · log10

(

MAX2

MSE

)

where MAX represents the maximum pixel value (e.g., 255 for 8-bit images). Higher

PSNR values indicate better image quality, as they correspond to lower MSE values.

Higher PSNR values generally indicate better quality of the reconstructed image.

9



6 Example of SVD Application: Image Reconstruction 6.2 Image quality metrics

6.2.3 Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure assesses the visual impact of three

characteristics: luminance, contrast, and structure. The SSIM index is defined as:

SSIM(I, Î) =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2

Î
+ C2)

where µI and µÎ are the average pixel values of the original and reconstructed

images, σ2
I and σ2

Î
are the variances, and σIÎ is the covariance. The constants C1

and C2 are small values added for stability. SSIM values range from -1 to 1, with

values closer to 1 indicating better similarity.

These metrics can effectively evaluate the quality of images reconstructed through

SVD compression, providing insights into how well the compression process

preserves the original image details.

6.2.4 Comparison of image compression methods

In this section, we compare the performance of different image compression

methods, specifically focusing on Singular Value Decomposition (SVD), Discrete

Cosine Transform (DCT), Wavelet Transform (Haar), Fractal Compression,

Run-Length Encoding (RLE), and Predictive Coding. Each method has its unique

characteristics and is suitable for different types of image data. The evaluation

metrics used for comparison include Mean Squared Error (MSE), Peak

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). A

brief description of compression methods is given below.

• SVD (Singular Value Decomposition): A linear algebra technique that

decomposes a matrix into singular values and orthogonal matrices, providing

efficient low-rank approximations suitable for image compression.

• DCT (Discrete Cosine Transform): Widely used in JPEG compression, DCT

transforms image data into a frequency domain, allowing for the quantization

and truncation of less significant frequencies to reduce file size while

maintaining visual quality.

• Wavelet (Haar Transform): Utilizes wavelet functions to represent data at

different scales and resolutions, allowing for both spatial and frequency

localization, making it effective for compressing images with varying detail

levels.

• Fractal Compression: This method relies on self-similarity in images and

encodes them by identifying and representing repetitive patterns, which can

lead to high compression ratios, especially for natural images.

• RLE (Run-Length Encoding): A lossless compression technique that replaces

sequences of the same data value with a single value and a count, making it

effective for images with large uniform areas.

10



6.3 Orthogonal subspaces in SVD 6 Example of SVD Application: Image Reconstruction

• Predictive Coding: This approach predicts pixel values based on neighboring

pixels and encodes the difference between the predicted and actual values,

effectively reducing redundancy in the image data.

The performance metrics for each compression method are summarized in Table 1.

Table 1: Comparison of Image Compression Methods

Method MSE PSNR (dB) SSIM

SVD 36.1802 32.5461 0.8247

DCT 107.6621 27.8102 0.8217

Wavelet 32.9375 32.9539 0.9582

Fractal 20.4741 35.0188 0.9320

RLE 0.0000 inf 1.0000

Predictive 107.2521 27.8267 0.5477

The comparison of various image compression methods, as presented in Table 1,

highlights the promising performance of Singular Value Decomposition (SVD) image

compression. The SVD method achieved a Mean Squared Error (MSE) of 36.1802, a

Peak Signal-to-Noise Ratio (PSNR) of 32.5461 dB, and a Structural Similarity Index

Measure (SSIM) of 0.8247. In terms of image quality, a PSNR value above 30 dB

is generally considered acceptable for high-quality image reconstruction, and the

SVD method meets this criterion. Similarly, the SSIM score of 0.8247 indicates a

relatively high level of structural similarity, as values closer to 1.0 are preferred

for maintaining perceptual quality. These results suggest that SVD is a promising

approach for image compression, effectively balancing compression efficiency with

visual quality, particularly suitable for applications that require efficient storage and

satisfactory image fidelity.

6.3 Orthogonal subspaces in SVD

The Singular Value Decomposition (SVD) of the original data matrix X enables its

decomposition into two orthogonal subspaces: the dominant subspace,

represented by the components USkV
T , which corresponds to the signal

information, and the subdominant subspace, represented by USn−kV
T , which

captures the noise components. This dual representation provides a clear

delineation of the image data into signal and noise, significantly enhancing our

ability to analyze and process the data effectively. This formalism can be

represented as in Figure 4.
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Dominant Subspace

Subdominant Subspace

Feature Space

Value Space

Signal

(USkV
T )

Noise

(USn−kV
T )

SVD Components

Figure 4: Dominant-subdominant splitting of the image SVD.

Using the SVD, all the fundamental subspaces and their rank can be extracted. This

residing relationship can be visualized as:
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The column vectors form spans for the subspaces are given by
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R (X) = span {u1, . . . , uρ}

R
(

X
T
)

= span {v1, . . . , vρ}

N
(

X
T
)

= span {uρ+1, . . . , um}

N (X) = span {vρ+1, . . . , vn}

The conclusion is that the full SVD provides an orthonormal span for not only the

two null spaces, but also both range spaces. All these theories can easily be

extended to image processing. The right singular vectors associated with the

vanishing singular values of X define the null space of the matrix, while the left

singular vectors corresponding to the non-zero singular values span the range of X.

Consequently, the rank of X equals the count of non-zero singular values, which is

directly related to the number of non-zero diagonal elements in the singular value

matrix S. This orthogonal partitioning of the M -dimensional vector space mapped

by X is essential in applications such as image processing, where distinguishing

between the signal and noise components can significantly enhance techniques

such as watermarking.

Figure 5 illustrates the image data’s dominant subspace, truncated to k = 40 SVD

components, alongside its subdominant noise subspace.

(a) Original Image (b) Reconstructed Image (c) Extracted Noise

Figure 5: Comparison of Original Image, Reconstructed Image after SVD Compression

(with k = 40), and Extracted Noise. These subplots illustrate the effectiveness of SVD in

reconstructing the original image while isolating noise components.

This property of SVD effectively facilitates the identification of the rank of X, the

orthonormal basis for its range and null spaces, and enables optimal low-rank

approximations in various norms, thus paving the way for significant advancements

in image processing applications, including watermarking, where the relationship
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between the SVD domain and noisy or watermarked images can be leveraged

effectively.

To investigate the influence of the truncation factor k on image quality, experiments

were conducted to evaluate the Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index (SSIM) values of reconstructed images for various k values. The

results, summarized in Table 2, indicate a clear trend: as the truncation factor

increases, both PSNR and SSIM improve significantly. This improvement suggests

that retaining more singular values enhances the quality of the reconstructed

images, thereby preserving essential details and structures. Notably, the PSNR

values reach a peak of 39.15 dB and the SSIM values approach 0.93 when k is set

to 1000, indicating high fidelity to the original image.

Table 2: Relationship between Truncation Factor k and Image Quality Metrics.

k PSNR (dB) SSIM

1 14.445199 0.765134

5 20.347972 0.779434

10 22.906752 0.784555

20 25.443104 0.789932

50 28.667464 0.799783

100 31.237551 0.814706

200 33.401548 0.837690

400 35.248494 0.870490

600 36.602859 0.895303

800 37.881342 0.915886

1000 39.145403 0.933217

Figure 6 illustrates the relationship between the truncation factor k and the image

quality metrics PSNR and SSIM. The horizontal axis represents the truncation factor

k, while the two curves depict the corresponding PSNR and SSIM values for various

k settings.
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Figure 6: Variation of PSNR and SSIM with respect to the truncation factor k.

By analyzing the plot, one can easily determine the appropriate truncation parameter

k needed to achieve a desired PSNR or SSIM value, thereby ensuring optimal fidelity

and perceptual quality in the reconstructed image. This graphical representation

serves as a practical tool for selecting the truncation factor, facilitating a balance

between compression efficiency and image quality. For instance, if a target PSNR

value of 35 dB is desired, one can project this value onto the PSNR curve and trace

down to the horizontal axis to identify the corresponding k value, which allows for

informed decision-making in image compression settings.

7 New Role- SVD as a Denoiser

Singular Value Decomposition (SVD) is a powerful mathematical technique that has

various applications in image processing, including noise filtering and digital

watermarking.

In the context of noise filtering, SVD can efficiently separate the noise components

from the original image signal. The SVD approximates the image matrix by

decomposing it into an optimal estimate of the signal and the noise components.

This property makes SVD a useful tool for removing noise from images while

preserving the quality and recognition of the original content.

In this study, we assessed the correlation between consecutive reconstructed images

as a function of the truncation parameter k in Singular Value Decomposition (SVD).
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Figure 7: Correlation between original and reconstructed images from image SVD.

As shown in Figure 7, the sharp increase in correlation between consecutive

reconstructed images as k rises to 200 illustrates SVD’s strong ability to retain key

image details even with relatively low truncation levels. This trend suggests that

the primary singular values capture essential structural information of the original

image, leading to high-fidelity reconstructions while efficiently filtering out less

critical components. Given this preservation capacity, we proceed to assess SVD’s

denoising capability by calculating the PSNR and SSIM values for both the noisy

and denoised images.

Figure 8 illustrates experimental results of the SVD-based denoising process on a

high resolution image (20.0 MB, 4480× 6133, at 24 bit depth).

(a) Original Image in JPEG

format.

(b) Noisy Image (PSNR: 12.42,

SSIM: 0.0324.)

(c) Denoised Image (PSNR:

20.31, SSIM: 0.4374.)

Figure 8: Comparison of Original, Noisy, and Denoised Images using SVD.
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By considering the first 50 eigenimages as the image data subspace and the

remainder as the noise subspace, and then removing the noise subspace, Figure 8c

shows the image after noise removal.

Noise has a disproportionate impact on singular values (SVs) and singular vectors

(SCs), with smaller SVs and their corresponding SCs being more severely affected

compared to larger SVs and SCs. Experiments validate this phenomenon, as shown

in Figure 9, which depicts a 2-dimensional representation of the left and right SCs.

This highlights the contrast between the slower changing waveforms of the former

SCs and the faster changing waveforms of the latter SCs.

Reconstructed Left Singular Matrix (U)

(a) Left SCs, (b) Original Image.

Reconstructed Right Singular Matrix (V^T)

(c) Right SCs.

Figure 9: Comparison of the image with the reconstructed traces in the left singular

matrix (U) and the right singular matrix (VT ) of noisy image.

While SVD-based denoising methods have demonstrated promising results,

consistency in performance across different images is often challenging, particularly

within datasets like BSD400. In such cases, fixing a truncation parameter k does

not always yield optimal denoising performance. This limitation arises because the

variance of image information captured in the singular values varies across

different images. Consequently, an adaptive approach is preferable over a fixed

truncation level for retaining significant image details while effectively suppressing

noise.

To address this, we propose dynamically thresholding the singular values rather than

fixing k for truncation. By removing singular values below a specific threshold, we

focus on preserving image components that substantially contribute to the signal,

thereby enhancing denoising effectiveness. Experimentally, we observe that setting

the truncation threshold for singular values to 0.618 × mean(Σ), where Σ denotes

the diagonal matrix of singular values, achieves optimal denoising. This threshold

corresponds to approximately 61.8% of the mean singular value magnitude, which

is notably effective in retaining essential image features while filtering out high-

frequency noise components.

Our empirical results further validate this approach, revealing that the dynamic
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7 New Role- SVD as a Denoiser 7.1 SVD for unsupervised denoising

thresholding method consistently produces higher Peak Signal-to-Noise Ratio

(PSNR) values across a variety of images in the BSD400 dataset when compared to

fixed-k truncation. This improvement underscores the robustness of the adaptive

threshold in aligning the denoising process with each image’s inherent structural

properties, thereby achieving superior fidelity to the original image.

The effectiveness of the adaptive thresholding approach in Singular Value

Decomposition (SVD) for image denoising is exemplified in Figure 10. This figure

displays an image from the BSD400 dataset, showcasing the original, noisy input

and denoised output along with the PSNR and SSIM measures.

(a) Original Image from the

BSD400 dataset.

(b) Noisy Image (PSNR: 30.27,

SSIM: 0.7794).

(c) Denoised Image (PSNR:

32.27, SSIM: 0.8636).

Figure 10: Comparison of Original, Noisy, and Denoised images using SVD on BSD400

sample image.

7.1 Comparison and Advantages of SVD-Based Denoising in

Medical Imaging.

In medical imaging, one major hurdle is the lack of a clean reference image, which

complicates the task of denoising. Creating datasets with perfect reference images is

often impossible. This challenge is made even harder by the noise that arises from

natural physiological movements, which can introduce dynamic noise into MRI, CT,

and ultrasound scans, even if the patient is mostly still.

Many traditional denoising methods depend on machine learning algorithms that are

optimized with the help of reference images or alternative “doubly noisy” images

that serve as substitutes for the ideal ground truth. For example, recent research,

including a study by Floquet et al. (2024), has shown that using noisy reference

images can effectively help adjust the parameters for denoising techniques.

In these scenarios, optimization methods such as the Scipy optimizer and stochastic

gradient optimization are applied to refine the algorithms, aiming to reduce the

Mean Square Error (MSE). This fine-tuning process has resulted in impressive

outcomes, achieving a Peak Signal-to-Noise Ratio (PSNR) of 33.8, indicating a

significant improvement in image quality (reference:

https://sijuswamy.github.io/Denoising-Manuscript/.
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8 Image Forensics with SVD

On the other hand, an SVD-based approach has the potential to avoid the

requirement for having any ground truth reference which could be more concept

around it altogether. Using the SVD it is then possible to filter noise depending on

the singular values relating to structural image information. The denoising based

on SVD yielded a PSNR of 32.27 on a similarly noisy image in a comparative

experiment—a value with 5% from PSNRs achieved by parameter-optimized

methods of denoising without a need of a reference image. However, its

independence from ground truth is an advantage for medical applications where

unsupervised methods may reduce cost and complexity of operation.

These results could be further improved with a hybrid method that combines a first

stage of initial denoising and even using a noisy image as a prior together with a

method with optimized parameters then using SVD to help capture dominant

features in images. Even without a reference image, SVD is able to act as an

adaptive, standalone denoising solution and opens sustainable possibilities in the

medical innovations context where the reference is commonly unknown and the

denoising process is crucial for the meaningful diagnosis.

8 Image Forensics with SVD

In the contemporary digital era, digital forensics has become crucial for combating

counterfeiting and manipulation of digital evidence aimed at illicit profit or legal

evasion. Forensic research encompasses various domains, including steganography,

watermarking, authentication, and labeling. Numerous solutions have been

developed to fulfill consumer demands, such as authentication systems, DVD copy

control, and hardware/software watermarking.

Singular Value Decomposition (SVD) serves as a potent method in this realm,

concentrating significant signal energy into a minimal number of coefficients while

adapting to local statistical variations in images. As an image-adaptive transform,

SVD requires careful representation to ensure accurate data retrieval.

8.1 Image watermarking with scaled additive approach

SVD-based watermarking techniques exploit the stability of singular values (SVs),

which represent the image’s luminance. Minor alterations in these values do not

drastically compromise the visual quality of the host image. Methods typically utilize

either the largest or smallest SVs for watermark embedding, employing additive

techniques or quantization. For instance, D. Chandra’s methodology involves the

additive incorporation of scaled watermark singular values into the singular values

of the host image X [4]:

SVmodified = SVoriginal + α ·Watermark

Here, α denotes a scaling factor, allowing for effective watermark integration while

maintaining the fidelity of the original image. The scaled additive algorithm for

image watermarking is given in Algorithm 1.
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Algorithm 1 Scaled Additive Approach for Image Watermarking

Require: Cover image A, Watermark W , Scaling factor α

Ensure: Watermarked image Aw, Extracted watermark We

1: Watermark Embedding:

2: Compute SVD of the cover image A: [U1, S1, V1]← svd(A)

3: Modify the singular values by adding the scaled watermark: temp← S1+(α ·W )

4: Compute SVD of the modified singular matrix: [Uw, Sw, Vw]← svd(temp)

5: Reconstruct the watermarked image: Aw ← U1 · Sw · V
T
1

6: Watermark Extraction:

7: Compute SVD of the watermarked image Aw: [Uw1, Sw1, Vw1]← svd(Aw)

8: Reconstruct the matrix D using the new singular values: D ← Uw · Sw1 · V
T
w

9: Extract the watermark: We ←
D−S1

α

10: Verification:

11: if W == We then

12: The image is not attacked.

13: else

14: The image has been attacked.

15: end if

Figure 11 represent the typical workflow of image forensic.

Original

Image
Watermark

Embed

Watermark

Watermarked

Image

Extract

Watermark

Check

Authenticity

Figure 11: Image forensic workflow.

Figure 12 demonstrate the watermarking of images using SVD. Since the extracted
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watermark is exactly what we embedded in the covering image, no attack is detected

[11].

(a) Original image. (b) Watermarked image. (c) Extracted watermark.

Figure 12: Demonstration of watermarking a confidential image using SVD.

In this first evaluation the PSNR value of watermarked image is 29.08 and the

extraction is successful.

To evaluate the robustness and effectiveness of the Singular Value Decomposition

(SVD)-based watermarking approach on a broader spectrum of images, using the

BSD400 dataset offers a comprehensive test bed. The BSD400 dataset contains a

wide variety of images with intricate textures, fine details, and different visual

complexities, making it ideal for testing how well the SVD-based watermarking

technique can embed and extract watermarks under varied conditions.

By selecting images with delicate content, such as running letters and intricate

textures, the goal is to assess how well the watermark remains visually unobtrusive

in complex scenes while being resilient to potential attacks (such as noise,

compression, or cropping). This method will also allow for calculating objective

quality metrics like PSNR across different image categories, providing a robust

understanding of watermark quality and imperceptibility.

8.2 Image watermarking with adaptive scaled additive approach

Using the test 077.png image from the BSD400 dataset, we employ an adaptive

approach to watermarking that integrates D. Chandra’s scaled addition technique

with a balanced formula [4]:

SVmod = (1− α) · SVimg + α ·Watermark (1)

Algorithm for the adaptive scaled additive (ASA) approach is shown in Algorithm 2.
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Algorithm 2 Scaled Additive Approach for Image Watermarking

Require: Cover image A, Watermark W , Scaling factor α

Ensure: Watermarked image Aw, Extracted watermark We

1: Watermark Embedding:

2: Compute SVD of the cover image A: [U1, S1, V1]← svd(A)

3: Modify the singular values by adding the scaled watermark: temp ← (1 − α) ·

S1 + (α ·W )

4: Compute SVD of the modified singular matrix: [Uw, Sw, Vw]← svd(temp)

5: Reconstruct the watermarked image: Aw ← U1 · Sw · V
T
1

6: Watermark Extraction:

7: Compute SVD of the watermarked image Aw: [Uw1, Sw1, Vw1]← svd(Aw)

8: Reconstruct the matrix D using the new singular values: D ← Uw · Sw1 · V
T
w

9: Extract the watermark: We ←
D−S1

α

10: Verification:

11: if W == We then

12: The image is not attacked.

13: else

14: The image has been attacked.

15: end if

This new approach modifies the singular values by proportionally blending the

image’s original details with the watermark content based on the parameter α. The

adaptive blend allows for fine-tuning the watermark’s influence, thus optimizing

both its visibility and robustness. This adaptive watermarking formula . The

formula provides high readability and forensic resilience and enables the watermark

to stay subtle within the image, while enhancing durability against forensic attacks.

This allows for improved image readability and detail retention, particularly in face

images like test 077.png.

As a next step, experiment with various values of α to fine-tune the watermark’s

visibility and robustness. Additionally, evaluate the PSNR (Peak Signal-to-Noise

Ratio) values to assess the balance achieved by the adaptive method.

8.3 Perceptual Forensic Approach for Image Watermarking

The perceptual forensic approach for image watermarking, introduced by Sadek,

represents a significant advance in singular value decomposition (SVD)-based

watermarking techniques by targeting robustness and imperceptibility in forensic

applications. This approach, termed Global SVD (GSVD), employs a private

(non-blind) methodology, making it suitable for sensitive forensic tasks where

22



8.3 Perceptual Forensic 8 Image Forensics with SVD

watermark retrieval without the original image is critical. In this technique, the

watermark data is optimally embedded within the host image’s less significant

subspace, often referred to as the “noise subspace.” This embedding choice

leverages the low-impact regions of the image’s singular value structure, thus

maintaining the original image quality while preserving the watermark’s resilience.

A key innovation in Sadek’s method is the scaled addition of the watermark data

subspace into the host image’s singular values. Traditional SVD-based

watermarking techniques typically rely on a direct scaled addition of watermark

values to the singular values of the cover image. However, this conventional

approach often neglects the varying magnitude across the singular value spectrum,

leading to uneven watermark integration that may affect image quality. Sadek’s

approach addresses this limitation by “flattening” the range of singular values

before watermark embedding, which smooths out the differences in value

magnitude and allows for a more perceptually consistent embedding. This

adjustment not only enhances the watermark’s imperceptibility but also strengthens

its resilience against potential distortions or attacks, which are common in forensic

scenarios.

The GSVD-based perceptual forensic approach is inherently adaptable, allowing the

embedded watermark to withstand different types of image manipulations

depending on the robustness requirements. By embedding the watermark within

the less visually significant regions of the singular value matrix, the GSVD

technique achieves a balance between maintaining high perceptual quality and

ensuring the watermark’s durability.

The algorithm for the perceptual forensic method for watermarking is given in

Algorithm 3.
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Algorithm 3 Perceptual Forensic Watermarking using SVD

1: Input: Cover image X, Watermark W , Scaling factor α, Threshold parameter k

2: Output: Watermarked image Y , Extracted watermark We

3: Step 1: Read cover image X and watermark W

4: Step 2: Compute the SVD of X and W

5: X = UhShV
T
h

6: W = UwSwV
T
w

7: Step 3: Define scaled addition for the modified singular values

8: for i = M − k to M , with q = 1 to k do

9: Sm(i) = Sh(i) + α · ln(Sw(q))

10: end for

11: For all other i, Sm(i) = Sh(i)

12: Step 4: Form the watermarked image Y

13: Y = UhSmV
T
h

14: Step 5: Reconstruct singular values for watermark extraction

15: for i = M − k to M do

16: S ′
w(i) = exp

(

Sm(i)− Sh(i)

α

)

17: end for

18: Step 6: Extract the watermark

19: We = UwS
′
wV

T
w

20: Step 7: Perform reconstruction check by comparing We with W

This method is particularly useful in forensic watermarking applications that

demand both high fidelity and robustness, such as in medical imaging and

high-resolution photographic forensics, where maintaining image integrity is

paramount. This technique’s ability to fine-tune watermark robustness based on

singular value dynamics, while preserving the host image quality, marks it as a

promising advancement in forensic watermarking applications.

Figure 13 illustrate the results of the adaptive watermarking technique using D.

Chandra’s approach and the perceptual forensic approach, applied to a sample image

in the BSD400 image dataset at α = 0.01. The first row shows the original and

watermark-modified images, while the second row demonstrates the images after

the application of direct perceptual forensic watermarking and the images with a

Gaussian noise for forensic testing [6].

From Figure 13d, the perceptive forensic approach is a winner in maintaining the

image details in watermarking and this fact is substantiated with Table 4 . Also it is

noted that noising after watermarking the image through SVD produces almost

same PSNR across the experiments. A detailed comparison of image detailing after

watermarking on uncompressed and compressed version of the BSD400 image

test 077.png is shown in Table 3.
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(a) Original Image (test 077). (b) Chandra’s method output. (c) Adaptive method output.

(d) Perceptive Method Output

with k = 5.

(e) Perceptive Method with

Gaussian noise with k = 5.

(f) Chandra’s method with

Gaussian noise.

Figure 13: Results of Watermarking with scaled addition and perceptual forensic

approaches using SVD.

Table 3: Peak Signal to Noise Ratio of various watermarked versions of test 077 image

from BSD400 dataset under scaled additive (SA) and adaptive scaled additive (ASA)

approaches.

Image

type

α = 0.01 α = 0.1 α = 0.2 α = 0.3

SA ASA SA ASA SA ASA SA ASA

Watermarked 61.84 46.41 38.83 26.56 30.82 20.68 25.16 17.35

Noised after

watermarked
20.70 20.66 20.66 19.74 20.48 17.86 19.91 16.06

Watermarked &

Compressed
49.32 44.56 38.60 26.54 31.07 20.70 26.03 17.49

From Table 3, it is clear that both scaled additive and adaptive scaled additive

approaches gives maximum image detaining in the watermarked state is at lower

values of α. Maintaining readability and security is the key aspect in image

forensic. So α = 0.01 is a safe choice. At the same level of scaling the perceptual

forensic approach is used in the BSD400 image. Comparison of PSNR values of

scaled additive, adaptive scaled additive and the perceptual forensic approaches at

α = 0.01 is shown in Table 4.
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Table 4: Peak Signal to Noise Ratio of various watermarked versions of test 077 image

from BSD400 dataset under scaled additive (SA), adaptive scaled additive (ASA) and

perceptual forensic approaches.

Image

type

α = 0.01

Scaled Additive Adaptive Scaled Additive Perceptual Forensic

Watermarked 61.84 46.41 75.17

Noised after

watermarked
20.70 20.66 20.68

Watermarked

& Compressed
49.32 44.56 38.87

Watermarking through Singular Value Decomposition (SVD) is emerging as a

promising method in the field of medical imaging to protect data integrity and

authenticity. In our study, an available CT image was used to embed a watermark

using both a scaled addition method and an adaptive perceptual forensic approach.

When unaltered, the watermark was effectively extracted, showing that SVD-based

watermarking can preserve image integrity under normal conditions. However,

when noise was introduced after embedding, the extracted watermark showed

substantial degradation, highlighting the technique’s sensitivity to potential

tampering.

(a) Original Brain CT Image

from radiopedia.

(b) Scaled Additive

Watermarked Image

(c) Perceptual Forensic

Watermarked Image

Figure 14: Comparison of Brain CT images: (a) Original Brain CT Image, (b)

Watermarked with scaled additive approach, (c) Watermarked with perceptual forensic

approach.

The effect of watermarking on the Brain CT image using different image forensic

approaches is shown in Figure 14. The scaled addition method achieved a Peak

Signal-to-Noise Ratio (PSNR) of 33.93, balancing visibility and quality. Meanwhile,

the perceptual forensic approach, designed to better manage watermark strength

relative to image details, attained a PSNR of 102.87, maintaining high image

fidelity. These results indicate that SVD-based watermarking techniques can be
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effective for medical imaging applications, where preserving diagnostic quality

while protecting image authenticity is critical. This adaptive method offers a

balanced approach to ensure data protection without compromising readability and

detail in medical images.

9 Conclusion

This study investigated SVD-based image processing applications, specifically

focusing on image compression, image denoising, and image forensic analysis.

Through experimental analysis on high-resolution images, the BSD400 dataset, and

medical images, this work examined the effectiveness of two watermarking

approaches: scaled additive embedding and perceptual forensic embedding. In the

scaled additive approach, the watermark was scaled and embedded within the

singular values of the image before full SVD decomposition. To improve the

adaptability across images with varying detail levels, an adaptive scaling

mechanism was introduced, achieving high-quality image blending with minor

scaling factors (α < 0.02).
In the perceptual forensic approach, watermark embedding targeted distinct ranges

of singular values, optimizing the visibility and robustness of the watermark under

forensic scrutiny. This method employed a locally adaptive SVD, enhancing

watermark resilience while preserving essential image details, making it effective

for applications requiring forensic analysis. Additionally, image denoising was

implemented as an automatic fine-tuning step to reduce noise introduced during

watermarking, further solidifying the watermark’s readability and stability.

This work is a partial replication and extension of Sadek’s review on SVD-based

image processing applications, which highlights the state-of-the-art methods and

challenges in SVD applications for image processing [6]. By incorporating aspects

of automated fine-tuning for denoising algorithms in the watermarking process,

this study contributes a refined understanding of how SVD can be leveraged to

balance image quality and watermark resilience. Overall, the findings affirm that

SVD-based techniques fulfill the study’s objectives across compression, denoising,

and forensic applications, providing a flexible and robust approach to image

processing that is effective across various image types and contexts. Future work

may explore additional fine-tuning and new methodologies to enhance forensic

robustness and adaptive capabilities in real-world applications.
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