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Abstract

Singular Value Decomposition (SVD) has recently gained significant
attention as a transformative approach in image processing. As a robust
algebraic tool, SVD demonstrates unique capabilities for various imaging
applications, yet its full potential remains underutilized. This study presents an
experimental evaluation of SVD as an effective transform method in image
processing, highlighting its versatile properties that can be leveraged for
emerging applications. The project work explores these SVD properties through
a series of imaging experiments, providing insights into its utility and
recommending future research directions. By examining existing SVD-based
techniques and proposing new applications derived from SVD’s structural
attributes, this study aims to deepen understanding of SVD’s role in advancing
image processing and to promote further exploration into its applications and
research challenges.
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2 Related works

1 Introduction

Linear Algebra based SVD is a powerful method to be used within the realm of digital
image processing. SVD decomposes a matrix in to three constitutive matrices U, S,
and V, thus making it possible to represent an image using a fewer number of values
[1]. This characteristic has practical usage such as for image compression by keeping
few singular values in S matrix and stores the characteristics feature of the image,
hence reduce storage.

Researches suggested that It can be done if appropriate number of singular values
maintained and image can be compressed at higher ratio with good quality The
number of singular values kept (and thus the size of the image to be compressed)
is always not more (and often far less) than the number of pixels in the original
image. Thus, SVD turns out to be a relatively strong technique for applications where
a minimum number of storage space and bandwidth is required to be preserved
during transmission of signals such as in satellite imagery, medical imaging and
photo enhancement.

Singular Value Decomposition (SVD) is a powerful mathematical technique with a
diverse range of applications in image processing. While its capabilities are
well-established, there remains untapped potential in fully harnessing its versatility.
This paper delves into the rich properties of SVD and demonstrates how they can be
leveraged across various image processing tasks, such as compression,
watermarking, and quality assessment.

The study presents several key findings. First, the experiments validate known but
underutilized characteristics of Singular Value Decomposition (SVD) in the context
of image processing. This serves to aid ongoing efforts aimed at enhancing the
application of these SVD characteristics. Second, the research identifies new trends
and challenges faced in the application of SVD for image processing. Some of these
trends are corroborated by experimental data, while others require additional
verification. Finally, this work lays the groundwork for future investigations,
highlighting promising avenues for further exploration and development.

Overall, this work offers a comprehensive examination of the rich properties of
Singular Value Decomposition (SVD) and its multifaceted applications in the field
of image processing. By shedding light on both the established and emerging
aspects of SVD, the study paves the way for more efficient and innovative
applications of this powerful mathematical technique.

2 Related works

Andrews and Patterson (1976) explored the significant role of Singular Value
Decomposition (SVD) techniques in the realm of digital image processing,
particularly for applications that demand high computational power and precise
imaging capabilities. Their work highlighted the versatility of SVD methods, which
are applicable not only to images but also to broader representations of point
spread functions (PSF) and impulse responses. The authors framed these
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2 Related works

techniques as natural extensions of linear filtering theory, thereby situating SVD
within established methodologies for image enhancement and restoration [2].

Moonen et al. (1992) expanded upon the established QR updating scheme by
introducing a more versatile and generally applicable method for updating the
Singular Value Decomposition (SVD). Their approach enhances the QR updating
technique by integrating a Jacobi-type SVD procedure. This innovative combination
allows for the effective restoration of an acceptable approximation of the SVD after
only a few SVD steps following each QR update. The authors demonstrated that
this method not only maintains a comparable computational cost to that of
traditional QR updating but also significantly reduces the overall computational
burden associated with SVD updates.[1].

In their paper, Kakarala and Ogunbona (2001) introduced a novel
multiresolution form of Singular Value Decomposition (SVD) designed for
enhanced signal analysis and approximation. Recognizing the inherent strengths of
traditional SVD—specifically its optimal decorrelation and subrank approximation
properties—the authors expanded upon these foundations by developing a
multiresolution approach that maintains linear computational complexity [3].

D Chandra (2002) introduced a novel watermarking technique- scaled additive
approach- for digital images that employs Singular Value Decomposition (SVD) as
a foundational method. The paper provides comprehensive simulation results that
showcase the robustness of this SVD-based watermarking approach against various
common image degradations, underscoring its effectiveness in preserving watermark
integrity in challenging conditions [4].

Sadek (2008) explored the increasing prominence of Singular Value
Decomposition (SVD) as a robust and reliable technique for orthogonal matrix
decomposition in the field of signal processing, particularly in the context of
watermarking and data hiding. The author highlighted the fundamental properties
of SVD, such as its conceptual clarity and stability, which contribute to its growing
popularity in various applications In the realm of watermarking, many researchers
have focused on leveraging the singular values of host images to embed hidden
information. However, Sadek introduced a critical examination of these SVD-based
watermarking techniques by presenting a counterfeiting attack specifically targeting
the embedded watermark information within the singular values. The study
underscored the inherent vulnerabilities of this class of watermarking methods,
revealing how singular values can be easily compromised through a broad spectrum
of image processing operations and deliberate attacks [5].

Sadek (2012) explores the potential of Singular Value Decomposition (SVD) as a
transformative tool in the realm of image processing. The paper presents a
comprehensive experimental survey highlighting SVD’s efficacy across various
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3 Introduction to Singular Value Decomposition (SVD)

imaging applications and proposed the perceptual forensic approach in image
watermarking. Recognizing SVD as an attractive algebraic transform, Sadek
emphasizes that its application in image processing is still in its early stages despite
its well-documented advantageous properties [6].

In their study, Kahu and Rahate (2013) investigated the application of Singular
Value Decomposition (SVD) as a technique for image compression, emphasizing its
effectiveness in expressing image data through a limited number of eigenvectors
determined by the image’s dimensionality. They highlighted the significance of
psycho-visual redundancies inherent in images, which enable compression without
compromising the quality of the visual output [7].

3 Introduction to Singular Value Decomposition
(SVD)

In linear algebra, Singular Value Decomposition (SVD) is a fundamental
factorization technique for rectangular real or complex matrices. It provides a
structure similar to the diagonalization of symmetric or Hermitian square matrices,
utilizing eigenvectors as a basis. SVD is particularly advantageous due to its
stability and effectiveness, allowing for decomposition into a set of linearly
independent components, each contributing uniquely to the matrix’s structure.

For a digital image X of size M x N (where M > N), the SVD of X is represented
as:

X =Uuxv?t

where U is an M x M orthogonal matrix, V' is an N x N orthogonal matrix, and ¥ is
an M x N diagonal matrix. The matrices U = [uq, us, ..., uy] and V = vy, vs, ..., vy]
contain the left and right singular vectors of X, respectively, and ¥ holds the singular
values o; of X along its diagonal in descending order of magnitude, with all off-
diagonal elements set to zero.

In this setup, U and V are unitary orthogonal matrices, meaning that each column
vector has a unit norm and is orthogonal to others. The singular values o; in
indicate the energy contribution of each corresponding component, while each pair
of singular vectors from U and V' defines the spatial orientation or geometry of these
components.

The left singular vectors (LSCs) of X are the eigenvectors of the matrix X X7, while
the right singular vectors (RSCs) are eigenvectors of X7 X. Each singular value
represents the 2-norm of its associated component, with the largest singular values
capturing the most significant patterns or features in the data. This property allows
SVD to effectively highlight essential image components while suppressing noise
or less critical features, making it ideal for applications focused on key structural
features in image processing [2].

3
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4 SVD- A New Tool for Image Processing

Singular Value Decomposition (SVD) is a powerful and robust method for
orthogonal matrix decomposition, widely valued for its stability and conceptual
clarity. These attributes have led to its growing popularity in signal processing,
particularly in the domain of image processing. As an algebraic transformation,
SVD brings several advantageous properties to imaging, which this section
examines. While some of these properties are well-utilized, others present
opportunities for further exploration and application.

Several key properties of SVD make it particularly useful in image processing.
These include maximum energy packing, efficient solutions to least squares
problems, calculation of matrix pseudo-inverses, and multivariate analysis [8]. An
essential feature of SVD is its relationship to matrix rank and its ability to
approximate matrices at a given rank. Digital images, often represented as low-rank
matrices, can be effectively described by a limited number of eigenimages. This
approach allows image signals to be manipulated in two distinct subspaces [9].

In the sections that follow, key hypotheses related to these properties are proposed
and validated. For completeness, the theoretical SVD theorems relevant to these
applications are summarized, followed by a practical review of SVD properties with
experimental demonstrations.

4.1 SVD subspaces and architecture

The SVD method effectively divides a matrix into two orthogonal subspaces: the
dominant and subdominant subspaces. This division corresponds to a partitioning
of the M-dimensional vector space, separating primary signal components from
secondary ones [2, 9]. Such a property is particularly advantageous in applications
like noise filtering and digital watermarking, where isolating signal elements from
noise or embedding data is crucial [4, 6].

In the context of image processing, SVD architecture further highlights its utility. For
an image decomposed via SVD, each singular value (SV) represents the luminance
level of a specific image layer, while the associated singular vectors (SCs) provide
the geometric structure of that layer. Generally, prominent image features align with
eigenimages associated with larger singular values, while smaller singular values
correspond to components associated with noise [7].

4.2 PCA versus SVD

Principal Component Analysis (PCA), also known as the Karhunen-Loéve Transform
(KLT) or the Hotelling Transform, is a technique for computing dominant vectors that
represent a given dataset. PCA achieves an optimal basis for minimum mean squared
reconstruction of data and is computationally based on the SVD of the data matrix or
the eigenvalue decomposition of the data covariance matrix. SVD is closely related to
the eigenvalue-eigenvector decomposition of a square matrix X into VAV, where VV
is orthogonal, and A is diagonal. Notably, the matrices U and V' in SVD correspond to
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4.3 SVD Multiresolution 5 Optimal Approximation and Noise Isolation Using SVD

eigenvectors of X X7 and X7 X, respectively. If X is symmetric, the singular values
of X are the absolute values of its eigenvalues [8, 10].

4.3 SVD Multiresolution

SVD is known for its maximum energy packing capability, making it particularly
useful for applications requiring multiresolution analysis. This approach enables
statistical characterization of images across multiple resolutions, with SVD
decomposing a matrix into orthogonal components that allow optimal sub-rank
approximations. The multiresolution properties of SVD provide a framework to
measure several critical image characteristics at various resolutions, including
isotropy, sparsity of principal components, self-similarity under scaling, and
decomposition of mean squared error into meaningful components [3].

4.4 SVD oriented energy

In SVD-based analysis of oriented energy, both the rank of the problem and the
signal space orientation are identifiable. SVD allows decomposition into linearly
independent components, each with its own energy contribution. Represented as a
linear combination of principal components, SVD highlights dominant components
that define the rank of the observed system, with a few key components effectively
capturing the system’s structure. The concept of oriented energy is beneficial for
separating signals from different sources or selecting signal subspaces with maximal
activity and integrity. Singular values in SVD represent the square root of energy in
the corresponding principal direction, with the primary direction often aligned with
the first singular vector ;. Dominance accuracy can be measured by evaluating the
difference, or normalized difference, between the first two singular values [3, 5].
Many properties of SVD remain underutilized in image processing applications.
Subsequent sections will experimentally explore these unexploited properties to
demonstrate their potential for enhancing various image processing techniques.
Additional research is essential to fully harness this versatile transformation in new
and evolving applications.

5 Optimal Approximation and Noise Isolation Using
SVD

The SVD’s unique ability to distinguish image content from noise is critical for
efficient matrix approximation. In an SVD-decomposed matrix, the highest singular
values capture the most essential components of the image, while lower singular
values represent noise. By reconstructing the matrix with only the top & singular
values—forming an approximation X; = UX;V,/—SVD yields an optimal
representation that preserves primary image features while suppressing noise. This
characteristic makes SVD ideal for noise filtering, compression, and forensic
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6 Example of SVD Application: Image Reconstruction5.1 Rank approximation using SVD

applications, where detectable noise patterns are useful in watermarking and signal
integrity assessment.

5.1 Rank approximation using SVD

Singular Value Decomposition (SVD) facilitates low-rank approximation, enabling
optimal sub-rank representations by emphasizing the largest singular values that
encapsulate the majority of the energy within an image. SVD illustrates that a matrix
can be expressed as a sum of rank-one matrices. Given a matrix X € R"™*" with
p = min(m, n), the approximation can be represented as a truncated matrix X, with
a specified rank k. The representation is formulated as follows:

k
X~ X, = E siuiviT,
i=1

where s; are the singular values, u; are the left singular vectors, and v; are the right
singular vectors. Each term s;u;v] corresponds to a rank-one matrix, leading to the
conclusion that X is the sum of & rank-one matrices. This approximation captures as
much of the “energy” of X as possible while maintaining a rank of at most k. Here,
“energy” is quantified using the 2-norm or Frobenius norm.

The outer product uv! results in a matrix of rank 1, requiring M + N storage
compared to M x N for the original matrix. For truncated SVD transformations
with rank %, the required storage space is reduced to (m + n + 1)k, demonstrating

the efficiency of SVD in applications such as image compression and watermarking.

6 Example of SVD Application: Image Reconstruction

In this section, we demonstrate the application of Singular Value Decomposition
(SVD) on a JPEG image obtained from the internet. The image is subjected to low-
rank approximation using SVD to explore its effectiveness in image reconstruction
and compression.

For this experiment, we set the rank &£ = 40. The original image, denoted as X, is
decomposed into its singular values and singular vectors as follows:

X =USsv7T,

where U is an orthogonal matrix containing the left singular vectors, S is a diagonal
matrix of singular values, and V7 contains the right singular vectors. By retaining
only the top £ singular values and their corresponding singular vectors, we can
reconstruct a low-rank approximation of the image:

k
X ~ g siuiviT.
i=1
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In this instance, the low-rank approximation captures a significant portion of the
image’s energy, effectively preserving the essential visual features while reducing
the noise and detail represented by the higher-order singular values.

The reconstructed image using k& = 40 is displayed in Figure 1. This result illustrates
the ability of SVD to maintain the overall structure and key characteristics of the
original image while achieving a notable reduction in data size. The efficiency of
this low-rank approximation highlights the potential of SVD for applications in image
compression and restoration, allowing for storage savings without substantial loss of
quality.

This example underscores the practical utility of SVD in image processing, offering
a powerful tool for manipulating image data in various applications, including
compression, denoising, and feature extraction.

original compressed

Figure 1: Reconstructed image using SVD with low-rank approximation (k=40).

6.1 Secrets of left and right singular matrices

The matrices U and V7T provide crucial insights into the structural characteristics of
the image, specifically the column space and row space representations.

The left singular matrix U captures the column space of the image, which
represents the various features and patterns present in the image across its vertical
axis. In contrast, the right singular matrix V7 captures the row space of the image,
representing patterns across the horizontal axis. By visualizing the first two
components of these matrices, we can reconstruct the primary patterns within the
image.

The first two components of the column space from matrix U highlight the
dominant vertical patterns, while the first two components of the row space from
matrix V7 reveal the dominant horizontal patterns. This reconstruction allows for a
clear interpretation of how the image is constructed from these fundamental
features, showcasing the spatial relationships inherent in the image data.

It is important to note that the components of V' associated with the smallest
singular values correspond to noise in the image. This noise resides in the null
space of the image matrix X and contributes minimally to the overall structure of
the image. By identifying these components, we can effectively distinguish between
the essential features of the image and the extraneous noise that may obscure its

7
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true representation.

Row Space (VT)

Campenart Comeenem 1

(a) Left singular matrix U capturing the (b) Right singular matrix V7 capturing the
column space of the image. row space of the image.

Figure 2: Visualization of the components obtained from the SVD of the image.

Figure 3 displays the log-mod distribution of the singular values from the SVD of the
image, providing insight into the energy contributions of each component.

Singular Values Plot

—®— Singular Values

Singular Value

T T T T -
0 1000 2000 3000 4000
Index

Figure 3: Distribution of the singular values of the image.

The log-mod distribution of the singular values reveals crucial information about
the image’s structure and the underlying data’s dimensionality. The singular values,
arranged in descending order, represent the amount of energy each corresponding
eigenimage contributes to the overall image representation.

From Figure 3, a rapid decay in singular values indicates that a small number of
components capture the majority of the image’s energy, signifying a low-rank
structure. This property is advantageous for compression, as it suggests that the
image can be approximated using fewer outer products of rank-one matrices, thus
minimizing information loss.




6.2 Image quality metrics 6 Example of SVD Application: Image Reconstruction

The slope of the log-mod distribution further elucidates the significance of each
singular value; a steep drop-off signifies that most information is concentrated in
the first few singular values, while the tail end, characterized by smaller singular
values, is associated with noise and less informative features of the image. This
insight allows for strategic selection of singular values in applications such as
compression and denoising, where retaining the dominant components while
discarding those associated with lower energy can enhance the overall quality of
the reconstructed image.

6.2 Image quality metrics

In the context of image compression and reconstruction using Singular Value
Decomposition (SVD), it is essential to evaluate the quality of the reconstructed
image. Three popular metrics for assessing image quality are the Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index
Measure (SSIM). Each of these metrics provides a different perspective on the
quality of the reconstructed image compared to the original.

6.2.1 Mean Squared Error (MSE)

The Mean Squared Error is a measure of the average squared differences between
the original and reconstructed images. It is defined mathematically as:

1 N e
MSE = + > (1(i) - 1(i))

i=1

where I(i) is the pixel value of the original image, I(i) is the pixel value of the
reconstructed image, and N is the total number of pixels in the image. Lower MSE
values indicate better image quality.

6.2.2 Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio is a logarithmic measure that compares the maximum
possible power of a signal to the power of corrupting noise that affects the fidelity of
its representation. It is given by:

MAX?

where MAX represents the maximum pixel value (e.g., 255 for 8-bit images). Higher
PSNR values indicate better image quality, as they correspond to lower MSE values.
Higher PSNR values generally indicate better quality of the reconstructed image.

9



6 Example of SVD Application: Image Reconstruction 6.2 Image quality metrics

6.2.3 Structural Similarity Index Measure (SSIM)

The Structural Similarity Index Measure assesses the visual impact of three
characteristics: luminance, contrast, and structure. The SSIM index is defined as:

(2urp; + C1) (20,7 + Cs)

SSIM(I,]) =
D)= e a T oot + o2 1 G

where p; and p; are the average pixel values of the original and reconstructed
images, o7 and o are the variances, and o,; is the covariance. The constants C,
and C, are small values added for stability. SSIM values range from -1 to 1, with
values closer to 1 indicating better similarity.

These metrics can effectively evaluate the quality of images reconstructed through
SVD compression, providing insights into how well the compression process
preserves the original image details.

6.2.4 Comparison of image compression methods

In this section, we compare the performance of different image compression
methods, specifically focusing on Singular Value Decomposition (SVD), Discrete
Cosine Transform (DCT), Wavelet Transform (Haar), Fractal Compression,
Run-Length Encoding (RLE), and Predictive Coding. Each method has its unique
characteristics and is suitable for different types of image data. The evaluation
metrics used for comparison include Mean Squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM). A
brief description of compression methods is given below.

* SVD (Singular Value Decomposition): A linear algebra technique that
decomposes a matrix into singular values and orthogonal matrices, providing
efficient low-rank approximations suitable for image compression.

* DCT (Discrete Cosine Transform): Widely used in JPEG compression, DCT
transforms image data into a frequency domain, allowing for the quantization
and truncation of less significant frequencies to reduce file size while
maintaining visual quality.

* Wavelet (Haar Transform): Utilizes wavelet functions to represent data at
different scales and resolutions, allowing for both spatial and frequency
localization, making it effective for compressing images with varying detail
levels.

* Fractal Compression: This method relies on self-similarity in images and
encodes them by identifying and representing repetitive patterns, which can
lead to high compression ratios, especially for natural images.

* RLE (Run-Length Encoding): A lossless compression technique that replaces
sequences of the same data value with a single value and a count, making it
effective for images with large uniform areas.

10



6.3 Orthogonal subspaces in SVD 6 Example of SVD Application: Image Reconstruction

* Predictive Coding: This approach predicts pixel values based on neighboring
pixels and encodes the difference between the predicted and actual values,
effectively reducing redundancy in the image data.

The performance metrics for each compression method are summarized in Table 1.

Table 1: Comparison of Image Compression Methods

Method MSE PSNR (dB) | SSIM
SVD 36.1802 32.5461 | 0.8247
DCT 107.6621 | 27.8102 | 0.8217

Wavelet 32.9375 32.9539 0.9582
Fractal 20.4741 35.0188 | 0.9320
RLE 0.0000 inf 1.0000
Predictive | 107.2521 | 27.8267 | 0.5477

The comparison of various image compression methods, as presented in Table 1,
highlights the promising performance of Singular Value Decomposition (SVD) image
compression. The SVD method achieved a Mean Squared Error (MSE) of 36.1802, a
Peak Signal-to-Noise Ratio (PSNR) of 32.5461 dB, and a Structural Similarity Index
Measure (SSIM) of 0.8247. In terms of image quality, a PSNR value above 30 dB
is generally considered acceptable for high-quality image reconstruction, and the
SVD method meets this criterion. Similarly, the SSIM score of 0.8247 indicates a
relatively high level of structural similarity, as values closer to 1.0 are preferred
for maintaining perceptual quality. These results suggest that SVD is a promising
approach for image compression, effectively balancing compression efficiency with
visual quality, particularly suitable for applications that require efficient storage and
satisfactory image fidelity.

6.3 Orthogonal subspaces in SVD

The Singular Value Decomposition (SVD) of the original data matrix X enables its
decomposition into two orthogonal subspaces: the dominant subspace,
represented by the components US,V?T, which corresponds to the signal
information, and the subdominant subspace, represented by US,_,V7?, which
captures the noise components. This dual representation provides a clear
delineation of the image data into signal and noise, significantly enhancing our
ability to analyze and process the data effectively. =~ This formalism can be
represented as in Figure 4.
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6 Example of SVD Application: Image Reconstruction 6.3 Orthogonal subspaces in SVD

Value Space

| Signal

Dominant Subspace 1gnaT
| (USVH)

SVD Components
5 Feature Space
1 Noise
Subdominant Subspace
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Figure 4: Dominant-subdominant splitting of the image SVD.

Using the SVD, all the fundamental subspaces and their rank can be extracted. This
residing relationship can be visualized as:

X=UxVvT
o 0 _
0
0 02
. T V T
= [ Uz Uy } Op [ VR_T }
0 N
0
L 0 i
— vclz" —-—
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s
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The column vectors form spans for the subspaces are given by
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6.3 Orthogonal subspaces in SVD 6 Example of SVD Application: Image Reconstruction

R (X") =span{vi,...,v,}
N (XT) =span{uy1,.... uy}
N (X) =span{v,.1,..., Un }

The conclusion is that the full SVD provides an orthonormal span for not only the
two null spaces, but also both range spaces. All these theories can easily be
extended to image processing. The right singular vectors associated with the
vanishing singular values of X define the null space of the matrix, while the left
singular vectors corresponding to the non-zero singular values span the range of X.
Consequently, the rank of X equals the count of non-zero singular values, which is
directly related to the number of non-zero diagonal elements in the singular value
matrix S. This orthogonal partitioning of the M/ -dimensional vector space mapped
by X is essential in applications such as image processing, where distinguishing
between the signal and noise components can significantly enhance techniques
such as watermarking.

Figure 5 illustrates the image data’s dominant subspace, truncated to £ = 40 SVD
components, alongside its subdominant noise subspace.

(a) Original Image (b) Reconstructed Image (c) Extracted Noise

Figure 5: Comparison of Original Image, Reconstructed Image after SVD Compression
(with & = 40), and Extracted Noise. These subplots illustrate the effectiveness of SVD in
reconstructing the original image while isolating noise components.

This property of SVD effectively facilitates the identification of the rank of X, the
orthonormal basis for its range and null spaces, and enables optimal low-rank
approximations in various norms, thus paving the way for significant advancements
in image processing applications, including watermarking, where the relationship

13



6 Example of SVD Application: Image Reconstruction 6.3 Orthogonal subspaces in SVD

between the SVD domain and noisy or watermarked images can be leveraged
effectively.

To investigate the influence of the truncation factor ¥ on image quality, experiments
were conducted to evaluate the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) values of reconstructed images for various k values. The
results, summarized in Table 2, indicate a clear trend: as the truncation factor
increases, both PSNR and SSIM improve significantly. This improvement suggests
that retaining more singular values enhances the quality of the reconstructed
images, thereby preserving essential details and structures. Notably, the PSNR
values reach a peak of 39.15 dB and the SSIM values approach 0.93 when £ is set
to 1000, indicating high fidelity to the original image.

Table 2: Relationship between Truncation Factor £ and Image Quality Metrics.

k | PSNR (dB) SSIM

1 14.445199 | 0.765134

5 20.347972 | 0.779434

10 | 22.906752 | 0.784555
20 | 25.443104 | 0.789932
50 | 28.667464 | 0.799783
100 | 31.237551 | 0.814706
200 | 33.401548 | 0.837690
400 | 35.248494 | 0.870490
600 | 36.602859 | 0.895303
800 | 37.881342 | 0.915886
1000 | 39.145403 | 0.933217

Figure 6 illustrates the relationship between the truncation factor £ and the image
quality metrics PSNR and SSIM. The horizontal axis represents the truncation factor
k, while the two curves depict the corresponding PSNR and SSIM values for various
k settings.
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7 New Role- SVD as a Denoiser

Variation of PSNR and SSIM with Different k Values

T —®— PSNR
SSIM

10° 10! 102 10°
Number of Components (k)

Figure 6: Variation of PSNR and SSIM with respect to the truncation factor k.

By analyzing the plot, one can easily determine the appropriate truncation parameter
k needed to achieve a desired PSNR or SSIM value, thereby ensuring optimal fidelity
and perceptual quality in the reconstructed image. This graphical representation
serves as a practical tool for selecting the truncation factor, facilitating a balance
between compression efficiency and image quality. For instance, if a target PSNR
value of 35 dB is desired, one can project this value onto the PSNR curve and trace
down to the horizontal axis to identify the corresponding & value, which allows for
informed decision-making in image compression settings.

7 New Role- SVD as a Denoiser

Singular Value Decomposition (SVD) is a powerful mathematical technique that has
various applications in image processing, including noise filtering and digital
watermarking.

In the context of noise filtering, SVD can efficiently separate the noise components
from the original image signal. The SVD approximates the image matrix by
decomposing it into an optimal estimate of the signal and the noise components.
This property makes SVD a useful tool for removing noise from images while
preserving the quality and recognition of the original content.

In this study, we assessed the correlation between consecutive reconstructed images
as a function of the truncation parameter & in Singular Value Decomposition (SVD).
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7 New Role- SVD as a Denoiser

Correlation between Reconstructed Images and Original Image
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Figure 7: Correlation between original and reconstructed images from image SVD.

As shown in Figure 7, the sharp increase in correlation between consecutive
reconstructed images as k rises to 200 illustrates SVD’s strong ability to retain key
image details even with relatively low truncation levels. This trend suggests that
the primary singular values capture essential structural information of the original
image, leading to high-fidelity reconstructions while efficiently filtering out less
critical components. Given this preservation capacity, we proceed to assess SVD’s
denoising capability by calculating the PSNR and SSIM values for both the noisy
and denoised images.

Figure 8 illustrates experimental results of the SVD-based denoising process on a
high resolution image (20.0 MB, 4480 x 6133, at 24 bit depth).

(a) Original Image in JPEG (b) Noisy Image (PSNR: 12.42, (c) Denoised Image (PSNR:
format. SSIM: 0.0324.) 20.31, SSIM: 0.4374.)

Figure 8: Comparison of Original, Noisy, and Denoised Images using SVD.
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7 New Role- SVD as a Denoiser

By considering the first 50 eigenimages as the image data subspace and the
remainder as the noise subspace, and then removing the noise subspace, Figure 8c
shows the image after noise removal.

Noise has a disproportionate impact on singular values (SVs) and singular vectors
(SCs), with smaller SVs and their corresponding SCs being more severely affected
compared to larger SVs and SCs. Experiments validate this phenomenon, as shown
in Figure 9, which depicts a 2-dimensional representation of the left and right SCs.
This highlights the contrast between the slower changing waveforms of the former
SCs and the faster changing waveforms of the latter SCs.

H

(a) Left SCs, (b) Original Image. (c) Right SCs.

Figure 9: Comparison of the image with the reconstructed traces in the left singular
matrix (U) and the right singular matrix (V') of noisy image.

While SVD-based denoising methods have demonstrated promising results,
consistency in performance across different images is often challenging, particularly
within datasets like BSD400. In such cases, fixing a truncation parameter k& does
not always yield optimal denoising performance. This limitation arises because the
variance of image information captured in the singular values varies across
different images. Consequently, an adaptive approach is preferable over a fixed
truncation level for retaining significant image details while effectively suppressing
noise.

To address this, we propose dynamically thresholding the singular values rather than
fixing k for truncation. By removing singular values below a specific threshold, we
focus on preserving image components that substantially contribute to the signal,
thereby enhancing denoising effectiveness. Experimentally, we observe that setting
the truncation threshold for singular values to 0.618 x mean(X), where > denotes
the diagonal matrix of singular values, achieves optimal denoising. This threshold
corresponds to approximately 61.8% of the mean singular value magnitude, which
is notably effective in retaining essential image features while filtering out high-
frequency noise components.

Our empirical results further validate this approach, revealing that the dynamic
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7 New Role- SVD as a Denoiser 7.1 SVD for unsupervised denoising

thresholding method consistently produces higher Peak Signal-to-Noise Ratio
(PSNR) values across a variety of images in the BSD400 dataset when compared to
fixed-k truncation. This improvement underscores the robustness of the adaptive
threshold in aligning the denoising process with each image’s inherent structural
properties, thereby achieving superior fidelity to the original image.

The effectiveness of the adaptive thresholding approach in Singular Value
Decomposition (SVD) for image denoising is exemplified in Figure 10. This figure
displays an image from the BSD400 dataset, showcasing the original, noisy input
and denoised output along with the PSNR and SSIM measures.

(a) Original Image from the (b) Noisy Image (PSNR: 30.27, (c) Denoised Image (PSNR:
BSD400 dataset. SSIM: 0.7794). 32.27, SSIM: 0.8636).

Figure 10: Comparison of Original, Noisy, and Denoised images using SVD on BSD400
sample image.

7.1 Comparison and Advantages of SVD-Based Denoising in
Medical Imaging.

In medical imaging, one major hurdle is the lack of a clean reference image, which
complicates the task of denoising. Creating datasets with perfect reference images is
often impossible. This challenge is made even harder by the noise that arises from
natural physiological movements, which can introduce dynamic noise into MRI, CT,
and ultrasound scans, even if the patient is mostly still.

Many traditional denoising methods depend on machine learning algorithms that are
optimized with the help of reference images or alternative “doubly noisy” images
that serve as substitutes for the ideal ground truth. For example, recent research,
including a study by Floquet et al. (2024), has shown that using noisy reference
images can effectively help adjust the parameters for denoising techniques.

In these scenarios, optimization methods such as the Scipy optimizer and stochastic
gradient optimization are applied to refine the algorithms, aiming to reduce the
Mean Square Error (MSE). This fine-tuning process has resulted in impressive
outcomes, achieving a Peak Signal-to-Noise Ratio (PSNR) of 33.8, indicating a
significant improvement in image quality (reference:
https://sijuswamy.github.io/Denoising-Manuscript/.
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8 Image Forensics with SVD

On the other hand, an SVD-based approach has the potential to avoid the
requirement for having any ground truth reference which could be more concept
around it altogether. Using the SVD it is then possible to filter noise depending on
the singular values relating to structural image information. The denoising based
on SVD vyielded a PSNR of 32.27 on a similarly noisy image in a comparative
experiment—a value with 5% from PSNRs achieved by parameter-optimized
methods of denoising without a need of a reference image. However, its
independence from ground truth is an advantage for medical applications where
unsupervised methods may reduce cost and complexity of operation.

These results could be further improved with a hybrid method that combines a first
stage of initial denoising and even using a noisy image as a prior together with a
method with optimized parameters then using SVD to help capture dominant
features in images. Even without a reference image, SVD is able to act as an
adaptive, standalone denoising solution and opens sustainable possibilities in the
medical innovations context where the reference is commonly unknown and the
denoising process is crucial for the meaningful diagnosis.

8 Image Forensics with SVD

In the contemporary digital era, digital forensics has become crucial for combating
counterfeiting and manipulation of digital evidence aimed at illicit profit or legal
evasion. Forensic research encompasses various domains, including steganography,
watermarking, authentication, and labeling. @ Numerous solutions have been
developed to fulfill consumer demands, such as authentication systems, DVD copy
control, and hardware/software watermarking.

Singular Value Decomposition (SVD) serves as a potent method in this realm,
concentrating significant signal energy into a minimal number of coefficients while
adapting to local statistical variations in images. As an image-adaptive transform,
SVD requires careful representation to ensure accurate data retrieval.

8.1 Image watermarking with scaled additive approach

SVD-based watermarking techniques exploit the stability of singular values (SVs),
which represent the image’s luminance. Minor alterations in these values do not
drastically compromise the visual quality of the host image. Methods typically utilize
either the largest or smallest SVs for watermark embedding, employing additive
techniques or quantization. For instance, D. Chandra’s methodology involves the
additive incorporation of scaled watermark singular values into the singular values
of the host image X [4]:

SVimodified = S Voriginal + ¢ - Watermark

Here, o denotes a scaling factor, allowing for effective watermark integration while
maintaining the fidelity of the original image. The scaled additive algorithm for
image watermarking is given in Algorithm 1.
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8 Image Forensics with SVD 8.1 Watermarking with Scaled Additive Approach

Algorithm 1 Scaled Additive Approach for Image Watermarking

Require: Cover image A, Watermark W/, Scaling factor «
Ensure: Watermarked image A,,, Extracted watermark W,
1: Watermark Embedding:
Compute SVD of the cover image A: [Uy, S1, V1] < svd(A)
Modify the singular values by adding the scaled watermark: temp <« S; + (- W)
Compute SVD of the modified singular matrix: [U,,, Sy, V.| < svd(temp)

Reconstruct the watermarked image: A,, < U; - S, - V{¥

Watermark Extraction:
Compute SVD of the watermarked image A,: [Uy1, Swi, V1] < svd(Ay)

Reconstruct the matrix D using the new singular values: D < U, - Sy - V.I

D—S1
«

Y X N D

Extract the watermark: W, <

10: Verification:

11: if W == W, then

12: The image is not attacked.
13: else

14: The image has been attacked.
15: end if

Figure 11 represent the typical workflow of image forensic.

Original
Watermark
Image
Embed Watermarked
Watermark Image
Extract Check
Watermark Authenticity

Figure 11: Image forensic workflow.

Figure 12 demonstrate the watermarking of images using SVD. Since the extracted
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watermark is exactly what we embedded in the covering image, no attack is detected
[11].

BAMRITA SBAMRITA

(a) Original image. (b) Watermarked image. (c) Extracted watermark.

Figure 12: Demonstration of watermarking a confidential image using SVD.

In this first evaluation the PSNR value of watermarked image is 29.08 and the
extraction is successful.

To evaluate the robustness and effectiveness of the Singular Value Decomposition
(SVD)-based watermarking approach on a broader spectrum of images, using the
BSD400 dataset offers a comprehensive test bed. The BSD400 dataset contains a
wide variety of images with intricate textures, fine details, and different visual
complexities, making it ideal for testing how well the SVD-based watermarking
technique can embed and extract watermarks under varied conditions.

By selecting images with delicate content, such as running letters and intricate
textures, the goal is to assess how well the watermark remains visually unobtrusive
in complex scenes while being resilient to potential attacks (such as noise,
compression, or cropping). This method will also allow for calculating objective
quality metrics like PSNR across different image categories, providing a robust
understanding of watermark quality and imperceptibility.

8.2 Image watermarking with adaptive scaled additive approach

Using the test 077.png image from the BSD400 dataset, we employ an adaptive
approach to watermarking that integrates D. Chandra’s scaled addition technique
with a balanced formula [4]:

SVmod = (1 — @) - SVimg + o - Watermark (1)

Algorithm for the adaptive scaled additive (ASA) approach is shown in Algorithm 2.
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8 Image Forensics with SVD 8.3 Perceptual Forensic

Algorithm 2 Scaled Additive Approach for Image Watermarking

Require: Cover image A, Watermark W/, Scaling factor «
Ensure: Watermarked image A,,, Extracted watermark W,

1: Watermark Embedding:

2: Compute SVD of the cover image A: [Uy, S, V1] < svd(A)

3: Modify the singular values by adding the scaled watermark: temp <« (1 — «) -

S1+ (a- W)

4: Compute SVD of the modified singular matrix: [U,, Sy, V] < svd(temp)

Reconstruct the watermarked image: A, < U; - S, - V{¥

vl

Watermark Extraction:
Compute SVD of the watermarked image A,: [Uy1, Swi, Va] < svd(Ay)

Reconstruct the matrix D using the new singular values: D < U, - Sy - V.l

D—-51
e

v X 3N D

Extract the watermark: W, <

10: Verification:

11: if W == W, then

12: The image is not attacked.
13: else

14: The image has been attacked.
15: end if

This new approach modifies the singular values by proportionally blending the
image’s original details with the watermark content based on the parameter a. The
adaptive blend allows for fine-tuning the watermark’s influence, thus optimizing
both its visibility and robustness. This adaptive watermarking formula . The
formula provides high readability and forensic resilience and enables the watermark
to stay subtle within the image, while enhancing durability against forensic attacks.
This allows for improved image readability and detail retention, particularly in face
images like test_077.png.

As a next step, experiment with various values of « to fine-tune the watermark’s
visibility and robustness. Additionally, evaluate the PSNR (Peak Signal-to-Noise
Ratio) values to assess the balance achieved by the adaptive method.

8.3 Perceptual Forensic Approach for Image Watermarking

The perceptual forensic approach for image watermarking, introduced by Sadek,
represents a significant advance in singular value decomposition (SVD)-based
watermarking techniques by targeting robustness and imperceptibility in forensic
applications. This approach, termed Global SVD (GSVD), employs a private
(non-blind) methodology, making it suitable for sensitive forensic tasks where
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8.3 Perceptual Forensic 8 Image Forensics with SVD

watermark retrieval without the original image is critical. In this technique, the
watermark data is optimally embedded within the host image’s less significant
subspace, often referred to as the “noise subspace.” This embedding choice
leverages the low-impact regions of the image’s singular value structure, thus
maintaining the original image quality while preserving the watermark’s resilience.

A key innovation in Sadek’s method is the scaled addition of the watermark data
subspace into the host image’s singular values. Traditional SVD-based
watermarking techniques typically rely on a direct scaled addition of watermark
values to the singular values of the cover image. However, this conventional
approach often neglects the varying magnitude across the singular value spectrum,
leading to uneven watermark integration that may affect image quality. Sadek’s
approach addresses this limitation by “flattening” the range of singular values
before watermark embedding, which smooths out the differences in value
magnitude and allows for a more perceptually consistent embedding. This
adjustment not only enhances the watermark’s imperceptibility but also strengthens
its resilience against potential distortions or attacks, which are common in forensic
scenarios.

The GSVD-based perceptual forensic approach is inherently adaptable, allowing the
embedded watermark to withstand different types of image manipulations
depending on the robustness requirements. By embedding the watermark within
the less visually significant regions of the singular value matrix, the GSVD
technique achieves a balance between maintaining high perceptual quality and
ensuring the watermark’s durability.

The algorithm for the perceptual forensic method for watermarking is given in
Algorithm 3.
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8 Image Forensics with SVD 8.3 Perceptual Forensic

Algorithm 3 Perceptual Forensic Watermarking using SVD

Input: Cover image X, Watermark W, Scaling factor o, Threshold parameter k
Output: Watermarked image Y, Extracted watermark W,
Step 1: Read cover image X and watermark W
Step 2: Compute the SVD of X and W
X =U,S Vil
W = U,S,V.F
Step 3: Define scaled addition for the modified singular values
fori =M — k to M, with ¢ =1to k do
Sn(i) = Sh(i) + - In(Su(q))
end for
For all other i, S,,(i) = Si(7)
Step 4: Form the watermarked image Y’
Y = U,S, V'
Step 5: Reconstruct singular values for watermark extraction
: fori=M — kto M do .
S1,(i) = exp (—Sm(l) - Sh(l))

(8}
end for

N A A~ - > e

e S St
AR i

—_
a

=
® X

: Step 6: Extract the watermark
W, =U,S, VI
Step 7: Perform reconstruction check by comparing W, with W

N =
@ Y

This method is particularly useful in forensic watermarking applications that
demand both high fidelity and robustness, such as in medical imaging and
high-resolution photographic forensics, where maintaining image integrity is
paramount. This technique’s ability to fine-tune watermark robustness based on
singular value dynamics, while preserving the host image quality, marks it as a
promising advancement in forensic watermarking applications.

Figure 13 illustrate the results of the adaptive watermarking technique using D.
Chandra’s approach and the perceptual forensic approach, applied to a sample image
in the BSD400 image dataset at « = 0.01. The first row shows the original and
watermark-modified images, while the second row demonstrates the images after
the application of direct perceptual forensic watermarking and the images with a
Gaussian noise for forensic testing [6].

From Figure 13d, the perceptive forensic approach is a winner in maintaining the
image details in watermarking and this fact is substantiated with Table 4 . Also it is
noted that noising after watermarking the image through SVD produces almost
same PSNR across the experiments. A detailed comparison of image detailing after
watermarking on uncompressed and compressed version of the BSD400 image
test_077.png is shown in Table 3.
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(c) Adaptive method output.

(d) Perceptive Method Output (e) Perceptive Method with (f) Chandra’s method with
with & = 5. Gaussian noise with &k = 5. Gaussian noise.

Figure 13: Results of Watermarking with scaled addition and perceptual forensic
approaches using SVD.

Table 3: Peak Signal to Noise Ratio of various watermarked versions of test_077 image
from BSD400 dataset under scaled additive (SA) and adaptive scaled additive (ASA)
approaches.

Image a=0.01 a=0.1 a=0.2 a=0.3
type SA ASA SA ASA SA ASA SA ASA
Watermarked | 61.84 | 46.41 | 38.83 | 26.56 | 30.82 | 20.68 | 25.16 | 17.35
Noised after

20.70 | 20.66 | 20.66 | 19.74 | 20.48 | 17.86 | 19.91 | 16.06
watermarked

Watermarked &
Compressed

49.32 | 44.56 | 38.60 | 26.54 | 31.07 | 20.70 | 26.03 | 17.49

From Table 3, it is clear that both scaled additive and adaptive scaled additive
approaches gives maximum image detaining in the watermarked state is at lower
values of a. Maintaining readability and security is the key aspect in image
forensic. So a = 0.01 is a safe choice. At the same level of scaling the perceptual
forensic approach is used in the BSD400 image. Comparison of PSNR values of
scaled additive, adaptive scaled additive and the perceptual forensic approaches at
a = 0.01 is shown in Table 4.
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Table 4: Peak Signal to Noise Ratio of various watermarked versions of test_077 image
from BSD400 dataset under scaled additive (SA), adaptive scaled additive (ASA) and
perceptual forensic approaches.

Image a=0.01
type Scaled Additive | Adaptive Scaled Additive | Perceptual Forensic
Watermarked 61.84 46.41 75.17
Noi ft
oised after 20.70 20.66 20.68
watermarked
Wat k
atermarked 49.32 44.56 38.87

& Compressed

Watermarking through Singular Value Decomposition (SVD) is emerging as a
promising method in the field of medical imaging to protect data integrity and
authenticity. In our study, an available CT image was used to embed a watermark
using both a scaled addition method and an adaptive perceptual forensic approach.
When unaltered, the watermark was effectively extracted, showing that SVD-based
watermarking can preserve image integrity under normal conditions. However,
when noise was introduced after embedding, the extracted watermark showed
substantial degradation, highlighting the technique’s sensitivity to potential
tampering.

(a) Original Brain CT Image (b) Scaled Additive (0 Perceptual Forensic
from radiopedia. Watermarked Image Watermarked Image

Figure 14: Comparison of Brain CT images: (a) Original Brain CT Image, (b)
Watermarked with scaled additive approach, (c) Watermarked with perceptual forensic
approach.

The effect of watermarking on the Brain CT image using different image forensic
approaches is shown in Figure 14. The scaled addition method achieved a Peak
Signal-to-Noise Ratio (PSNR) of 33.93, balancing visibility and quality. Meanwhile,
the perceptual forensic approach, designed to better manage watermark strength
relative to image details, attained a PSNR of 102.87, maintaining high image
fidelity. These results indicate that SVD-based watermarking techniques can be
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9 Conclusion

effective for medical imaging applications, where preserving diagnostic quality
while protecting image authenticity is critical. This adaptive method offers a
balanced approach to ensure data protection without compromising readability and
detail in medical images.

9 Conclusion

This study investigated SVD-based image processing applications, specifically
focusing on image compression, image denoising, and image forensic analysis.
Through experimental analysis on high-resolution images, the BSD400 dataset, and
medical images, this work examined the effectiveness of two watermarking
approaches: scaled additive embedding and perceptual forensic embedding. In the
scaled additive approach, the watermark was scaled and embedded within the
singular values of the image before full SVD decomposition. To improve the
adaptability across images with varying detail levels, an adaptive scaling
mechanism was introduced, achieving high-quality image blending with minor
scaling factors (o < 0.02).

In the perceptual forensic approach, watermark embedding targeted distinct ranges
of singular values, optimizing the visibility and robustness of the watermark under
forensic scrutiny. This method employed a locally adaptive SVD, enhancing
watermark resilience while preserving essential image details, making it effective
for applications requiring forensic analysis. Additionally, image denoising was
implemented as an automatic fine-tuning step to reduce noise introduced during
watermarking, further solidifying the watermark’s readability and stability.

This work is a partial replication and extension of Sadek’s review on SVD-based
image processing applications, which highlights the state-of-the-art methods and
challenges in SVD applications for image processing [6]. By incorporating aspects
of automated fine-tuning for denoising algorithms in the watermarking process,
this study contributes a refined understanding of how SVD can be leveraged to
balance image quality and watermark resilience. Overall, the findings affirm that
SVD-based techniques fulfill the study’s objectives across compression, denoising,
and forensic applications, providing a flexible and robust approach to image
processing that is effective across various image types and contexts. Future work
may explore additional fine-tuning and new methodologies to enhance forensic
robustness and adaptive capabilities in real-world applications.
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