Problems
Example 1: Find Eigenvalues and Eigenvectors of the matrix, \[A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}\]
Solution:
The characteristic equation is given by \[det(A-\lambda I)=0\]
\[\begin{align*}
\lambda^2 - 4\lambda - 5 &= 0\\
(\lambda-5)(\lambda+1)&=0\\
\end{align*}\]
Hence the eigen values are \(\lambda_1=5,\quad \lambda_2=-1\).
So the eigen vectors are: \[\begin{align*}
EV(\lambda=\lambda_1)&=\begin{bmatrix}\lambda_1-d\\ c\end{bmatrix}\\
\therefore EV(\lambda=5)&=\begin{bmatrix}4\\ 4\end{bmatrix}=\begin{bmatrix}1\\ 1\end{bmatrix}\\
\therefore EV(\lambda=-1)&=\begin{bmatrix}-2\\ 4\end{bmatrix}=\begin{bmatrix}-1\\ 2\end{bmatrix}
\end{align*}\]
Problem 2: Calculate the eigenvalues and eigenvectors of the matrix: \(A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\)
Solution:
To find the eigenvalues and eigenvectors of a \(2 \times 2\) matrix, we can use the shortcut formula for the characteristic polynomial:
\[
\lambda^2 - \text{trace}(A)\lambda + \det(A) = 0,
\]
where \(A\) is the matrix. Let’s apply this to the matrix
\[
A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.
\]
First, we calculate the trace and determinant of \(A\):
- The trace is the sum of the diagonal elements:
\[
\text{trace}(A) = 2 + 2 = 4.
\]
- The determinant is calculated as follows:
\[
\det(A) = (2)(2) - (1)(1) = 4 - 1 = 3.
\]
Next, substituting the trace and determinant into the characteristic polynomial gives:
\[
\lambda^2 - (4)\lambda + 3 = 0,
\]
which simplifies to:
\[
\lambda^2 - 4\lambda + 3 = 0.
\]
We can factor this quadratic equation:
\[
(\lambda - 1)(\lambda - 3) = 0.
\]
Setting each factor to zero gives the eigenvalues:
\[
\lambda_1 = 1, \quad \lambda_2 = 3.
\]
To find the eigenvectors corresponding to each eigenvalue, we use the shortcut for the eigenvector of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\):
\[
EV(\lambda) = \begin{pmatrix} \lambda - d \\ c \end{pmatrix}.
\]
For the eigenvalue \(\lambda_1 = 1\):
\[
EV(1) = \begin{pmatrix} 1 - 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
\]
This eigenvector can be simplified (up to a scalar multiple) to:
\[
\mathbf{v_1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\]
For the eigenvalue \(\lambda_2 = 3\):
\[
EV(3) = \begin{pmatrix} 3 - 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.
\]
This eigenvector is already in a simple form:
\[
\mathbf{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.
\]
Problem 3: For the matrix: \(A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\), find the eigenvalues and eigenvectors.
Solution:
We are given the matrix \[
A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}
\]
and we aim to find its eigenvalues using the characteristic polynomial.
The shortcut formula for the characteristic polynomial of a \(3 \times 3\) matrix is given by: \[
\lambda^3 - \text{tr}(A)\lambda^2 + (\text{sum of principal minors of } A)\lambda - \det(A) = 0.
\]
The trace of a matrix is the sum of its diagonal elements. For matrix \(A\), we have: \[
\text{tr}(A) = 1 + 1 + 1 = 3.
\]
The principal minors are the determinants of the \(2 \times 2\) submatrices obtained by deleting one row and one column of \(A\).
The first minor is obtained by deleting the third row and third column: \[
\det\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = (1)(1) - (2)(0) = 1.
\]
The second minor is obtained by deleting the second row and second column: \[
\det\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = (1)(1) - (1)(1) = 0.
\]
The third minor is obtained by deleting the first row and first column: \[
\det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (1)(1) - (0)(0) = 1.
\]
Thus, the sum of the principal minors is: \[
1 + 0 + 1 = 2.
\]
The determinant of \(A\) can be calculated using cofactor expansion along the first row: \[
\det(A) = 1 \cdot \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - 2 \cdot \det\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} + 1 \cdot \det\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\] \[
= 1 \cdot (1) - 2 \cdot (0) + 1 \cdot (-1) = 1 - 0 - 1 = 0.
\]
Now, we substitute these values into the characteristic polynomial formula: \[
\lambda^3 - \text{tr}(A)\lambda^2 + (\text{sum of principal minors})\lambda - \det(A) = 0
\] \[
\lambda^3 - 3\lambda^2 + 2\lambda - 0 = 0.
\]
We now solve the equation: \[
\lambda^3 - 3\lambda^2 + 2\lambda = 0.
\] Factoring out \(\lambda\) and apply factor theorem, we get:
\[\begin{align*}
\lambda(\lambda^2 - 3\lambda + 2) &= 0\\
\lambda(\lambda-2)(\lambda-1)&=0
\end{align*}\]
This gives one eigenvalue: \[
\lambda_1 = 0;\quad \lambda_2=2;\quad \lambda_3=1
\]
Now we find the eigenvectors corresponding to each eigenvalue.
For \(\lambda_1 = 0\), solve \((A - 0I)\mathbf{v} = 0\): \[
\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\] This gives the system: \[
x + 2y + z = 0, \quad y = 0, \quad x + z = 0.
\] Thus, \(x = -z\), and the eigenvector is: \[
\mathbf{v}_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.
\]
For \(\lambda_2 = 2\), solve \((A - 2I)\mathbf{v} = 0\): \[
\begin{pmatrix} -1 & 2 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\] This gives the system: \[
-x + 2y + z = 0, \quad -y = 0, \quad x - z = 0.
\] Thus, \(x = z\), and the eigenvector is: \[
\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.
\]
For \(\lambda_3 = 1\), solve \((A - I)\mathbf{v} = 0\): \[
\begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\] This gives the system: \[
2y + z = 0, \quad x = 0.
\] Thus, \(z = -2y\), and the eigenvector is: \[
\mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}.
\]
Problem 3: If \(A=\begin{bmatrix}1&2&4\\ 0&3&4\\ 1&-1&-1 \end{bmatrix}\), compute the eigen values and eigen vectors and left eigen vectors of \(A\).
Solution:
We are given the matrix \[
A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 4 \\ 1 & -1 & -1 \end{pmatrix}
\]
and need to find its eigenvalues and eigenvectors.
The characteristic polynomial for a \(3 \times 3\) matrix is given by: \[
\lambda^3 - \text{tr}(A)\lambda^2 + (\text{sum of principal minors})\lambda - \det(A) = 0.
\]
The trace is the sum of the diagonal elements: \[
\text{tr}(A) = 1 + 3 + (-1) = 3.
\]
We now compute the \(2 \times 2\) principal minors:
Minor by removing the third row and third column: \[
\det\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = (1)(3) - (2)(0) = 3.
\]
Minor by removing the second row and second column: \[
\det\begin{pmatrix} 1 & 4 \\ 1 & -1 \end{pmatrix} = (1)(-1) - (4)(1) = -1 - 4 = -5.
\]
Minor by removing the first row and first column: \[
\det\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} = (3)(-1) - (4)(-1) = -3 + 4 = 1.
\]
Thus, the sum of the principal minors is: \[
3 + (-5) + 1 = -1.
\]
We calculate the determinant of \(A\) by cofactor expansion along the first row: \[
\det(A) = 1 \cdot \det\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} - 2 \cdot \det\begin{pmatrix} 0 & 4 \\ 1 & -1 \end{pmatrix} + 4 \cdot \det\begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix}.
\] The \(2 \times 2\) determinants are: \[
\det\begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} = -3 + 4 = 1, \quad \det\begin{pmatrix} 0 & 4 \\ 1 & -1 \end{pmatrix} = -4,
\] \[
\det\begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix} = -3.
\]
Thus: \[
\det(A) = 1 \cdot 1 - 2 \cdot (-4) + 4 \cdot (-3) = 1 + 8 - 12 = -3.
\]
Substituting into the characteristic polynomial: \[
\lambda^3 - \text{tr}(A)\lambda^2 + (\text{sum of principal minors})\lambda - \det(A) = 0,
\]
we get: \[
\lambda^3 - 3\lambda^2 - \lambda + 3 = 0.
\]
We now solve the cubic equation: \[\begin{align*}
\lambda^3 - 3\lambda^2 - \lambda + 3& = 0. \\
(\lambda-1)(\lambda+1)(\lambda -3)&=0
\end{align*}\]
\[\lambda_1 = 1, \quad \lambda_2 = -1, \quad \lambda_3 = 3.\]
To find the eigenvector corresponding to \(\lambda_1 = 3\), solve \((A - 3I)\mathbf{v} = 0\): \[
A - 3I = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 4 \\ 1 & -1 & -1 \end{pmatrix} - 3\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 2 & 4 \\ 0 & 0 & 4 \\ 1 & -1 & -4 \end{pmatrix}.
\]
Solving this system gives the eigenvector: \[
\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.
\]
For \(\lambda_2 = -1\), solve \((A +I)\mathbf{v} = 0\): \[
A +I = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 4 \\ 1 & -1 & -1 \end{pmatrix} +\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ 0 & 4 & 4 \\ 1 & -1 & 0 \end{pmatrix}.
\]
Note that the third row is depending on first and second rows. So by finding the cross product of first two rows,
\[
\mathbf{v}_2 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.
\]
For \(\lambda_3 = 1\), solve \((A -I)\mathbf{v} = 0\): \[
A - I = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 4 \\ 1 & -1 & -1 \end{pmatrix} -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 2 & 4 \\ 1 & -1 & -2\end{pmatrix}.
\]
Note that the second row is same as first row. So by finding the cross product of first and third rows, \[
\mathbf{v}_3 = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}.
\]
Thus, the eigenvalues of the matrix are: \[
\lambda_1 = 3, \quad \lambda_2 = -1, \quad \lambda_3 = 1
\]
with corresponding eigenvectors \(\mathbf{v}_1=\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\), \(\mathbf{v}_2=\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}\), and \(\mathbf{v}_3=\begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}\).
Left eigen vectors of the matrix \(A\) are eigen vectors of \(A^T\).
Here \(A^T=\begin{bmatrix}
1&0&1\\ 2&3&-1\\ 4&4&-1
\end{bmatrix}\).
Since \(A\) and \(A^T\) have same eigen values, it is enough to find corresponding eigen vectors. When \(\lambda=3\), the coefficient matrix of \((A-\lambda I)X=0\) reduced into \(\begin{bmatrix}
-2&0&1\\ 2&0&-1\\ 4&4&-4
\end{bmatrix}\)
Here the only independent rows are first and last. So the eigen vector can be found as the cross product of these two rows. \(\therefore v_1=\begin{bmatrix}
1\\1\\2
\end{bmatrix}\).
When \(\lambda=-1\), the coefficient matrix of \((A-\lambda I)X=0\) reduced into \(\begin{bmatrix}
2&0&1\\ 2&4&-1\\ 4&4&0
\end{bmatrix}\)
Here the only independent rows are first and second. So the eigen vector can be found as the cross product of these two rows. \(\therefore v_2=\begin{bmatrix}
-1\\1\\2
\end{bmatrix}\). When \(\lambda=1\), the coefficient matrix of \((A-\lambda I)X=0\) reduced into \(\begin{bmatrix}
0&0&1\\ 2&2&-1\\ 4&4&-2
\end{bmatrix}\)
Here the only independent rows are first and second. So the eigen vector can be found as the cross product of these two rows. \(\therefore v_2=\begin{bmatrix}
-1\\1\\0
\end{bmatrix}\).